Slide		1	
1			
	Environmental Variability Body Size, Body Composition, Maturation and Organ Function		
	Nick Holford Dept Pharmacology & Clinical Pharmacology University of Auckland		
Slide 2	 Objectives Onderstand the major sources of variability affecting the response to medicines Appreciate the relative contributions of body size, body composition, maturation and organ function to variability Learn the principles of dose individualization based on predictable sources of variability 		
Slide			
3	 Body Size is the most important quantitative determinant of drug dose The human body weight range varies from about 500 g to over 250 kg due to both biological variability and changes over the lifespan. This more than 500 fold range in size is directly translatable through volume of distribution into drug loading dose differences Because of allometrically predictable relationships beween weight and clearance the corresponding range of maintenance dose rates is only about 100 fold 		

	CL=CLstd x (FFM/FFMstd)^(3/4); CLstd is for fat free mass of 50 kg If the normal fat mass is the same as fat free mass plus a fat free mass equivalent fraction (Ffat) of fat mass then: CL=CLstd x ((FFM + FATM x Ffat)/(FFMstd + FATMstd x Ffat)/(FFMstd + FATMstd x Ffat)/(3/4); CLstd is for fat free mass of 50 kg and fat mass of 15 kg. Note that the standard mass used to calculate allometric size is the normal fat mass for a standard person (NFMstd).
	Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051-65. Xue L, Holford N, Ding XL, Shen ZY, Huang CR, Zhang H, et al. Theory-based pharmacokinetics and pharmacodynamics of S- and R-warfarin and effects on international normalized ratio: influence of body size, composition and genotype in cardiac surgery patients. Br J Clin Pharmacol. 2017;83(4):823-35. McCune JS, Bemer MJ, Barrett JS, Scott Baker K, Gamis AS, Holford NHG. Busulfan in Infant to Adult Hematopoietic Cell Transplant Recipients: A Population Pharmacokinetic Model for Initial and Bayesian Dose Personalization. Clin Cancer Res. 2014;20(3):754-63. Cortinez LI, Anderson BJ, Penna A, Olivares L, Munoz HR, Holford NH, et al. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth. 2010;105(4):448-56. Holford NHG, Anderson BJ. Allometric size: The scientific theory and extension to normal fat mass. Eur J Pharm Sci. 2017;109(Supplement):S59-S64.

Slide 8	 Differences in renal function can explain about a 10 fold difference in total drug clearance. Glomerular Filtration Rate 7 L/h in healthy young adult 0.5 L/h in terminal renal failure There is always some non-renal clearance e.g. via the gut which adds 0.5 L/h to total clearance even in renal failure 		
Slide 9	Prediction of Renal Function • Serum Creatinine is Used to Calculate Creatinine Clearance (CLcr) • Adults: • Coldren and babies • Strwarz • CLcr is approximately the same as glomerular filtration rate • Renal function is calculated relative to normal CLcr for weight and age: Experimentation • Renal Function = $\frac{\text{Predicted CLcr}}{\text{Normal CLcr}}$		Cockcroft & Gault method is recommended for prediction of drug clearance. The formula is based on clearance concepts and uses weight, age and sex to predict creatinine production rate based on expected muscle mass. Schwartz methods developed for children and babies using height as a measure of body size. MDRD and eGFR methods developed for diagnosis of different categories of renal function. These are empirical formulae that do not include body size (Levey et al. 1999). Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31-41. Schwartz GJ, Munoz A,
	derig Istans, 201 al right reserved.	1	Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New Equations to Estimate GFR in Children with CKD. J Am Soc Nephrol. 2009:ASN.2008030287. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461-70.

Qlide	1	i
Slide 10	Hepatic Function	
	 Difficult to predict hepatic drug clearance without administering the drug 	
	 "Liver Function Tests" measure liver damage which is not the same as function AST/ALT may be very high (1000s) in viral hepatitis with no changes in hepatic drug clearance Albumin and INR changes in terminal hepatic failure are correlated with hepatic drug clearance 	
	 Clinical Staging Systems Child-Pugh system Loosely correlated with hepatic drug clearance 	
Clida	OHEI Hollori, 2021 al rights reserved.	
Slide 11	 How Old is a Baby? Post-natal age (PNA) Does not account for <i>in utero</i> maturation Post-menstrual age (PMA) On average 2 weeks longer than biological age Post-conception age (PCA) The biological age but not widely recorded 	The age of a baby may be described using several kinds of "age". Post-natal age (PNA). This is the age (e.g. days) since birth. It does not account for in utero maturation of body structure and function. Post-menstrual age (PMA). This is the age (e.g. weeks) since the mother's last menstrual period. On average it is 2 weeks longer than biological age Post-conception age (PCA). This is the age (e.g. weeks) since conception. This is the best description of biological age but it is not widely recorded because the date of conception is often difficult to identify. Gestational age (GA). Defined by the PMA at birth. GA does not change with time. Post menstrual age is the recommended way to describe biological age. This recommendation is pragmatic rather than theoretically correct.
Slide 12	 Maturation and Ageing Maturation is about 30% of adult values at full term delivery Very premature neonates are around 10% of adult values In neonates and infants age accounts for a 10 fold increase in glomerular filtration rate from 24 weeks post-menstrual age up to 1 year of post-natal age (Rhodin et al. 2009). Age in older adults has a minor (~ 25% lower) influence on drug clearance once weight and other factors such as renal function are accounted for. 	Rhodin, M. M., B. J. Anderson, A. M. Peters, M. G. Coulthard, B. Wilkins, M. Cole, E. Chatelut, A. Grubb, G. J. Veal, M. J. Keir and N. H. Holford (2009). "Human renal function maturation: a quantitative description using weight and postmenstrual age." <u>Pediatr Nephrol 24(1): 67-76.</u>

Slide 16	 Body size, renal function and post- menstrual age are the most important determinants of drug dose In comparison to these factors other covariates such as genotype may pale into quantitative insignificance. Quantitative pharmacology can help put the role of using covariates to predict drug dose into a realistic perspective. 	Rothwell PM, Cook NR, Gaziano JM, Price JF, Belch JFF, Roncaglioni MC, et al. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: analysis of individual patient data from randomised trials. The Lancet. Theken KN, Grosser T. Weight- adjusted aspirin for cardiovascular prevention. The Lancet. 2018;392(10145):361-2.
	CR4CD Hotics 2021 all rights reserved.	
Slide 17	 Assessment Short Answer Question Examples Draw a graph of the relationship between body mass and clearance and body mass and volume of distribution over the human weight range. What are the major determinants of between subject differences in clearance? Give approximate relative importance of the determinants in numerical terms. Why are doses per kg typically larger in children when compared to adults? 	
	Øle-IG-Holford, 2021 slingstoreserved.	