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Outline

 The Hazard: Biological basis for survival

 The Pharmacokinetics of Survival

 Joint Models of PKPD and Time to Event

» Continuous

» Right censored

» Interval censored

 An Example (fracture risk reduction)
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Why do women live longer 

than men?
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http://www.allowe.com/Humor/whymendieyo
unger.htm 
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Survival in a Bathtub

“… a bathtub-shaped hazard is appropriate in populations followed from birth.” 
Klein, J.P., and Moeschberger, M.L. 2003. Survival analysis: techniques for censored and truncated data. New York: 

Springer-Verlag.

http://en.wikipedia.org/wiki/Bathtub_curve “The bathtub curve”

,...),,( ageracesexfHazard

 

The hazard describes the death rate at each 
instant of time. The shape of the hazard 
function over the human life span has the 
shape of a bathtub.  
US mortality data shows the hazard at birth 
falls quickly and eventually returns to 
around the same level by the age of 60. The 
hazard is approximately constant through 
childhood and early adolescence. The onset 
of puberty and subsequent life style 
changes (cars, drugs,…) adopted by men 
increases the hazard to a new plateau 
which lasts for 10 to 20 years. 
It would require a time varying model to 
describe how development (children) and 
ageing (adults) are associated with changes 
in death rate. 
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Survival and PK

Drug Events

Rate of loss
N=people alive

A=molecules remaining

Hazard

Integral AUC Cumulative Hazard

Non-parametric Non-compartmental Kaplan-Meier

Time Course
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The event rate is frequently scaled to a 
standard number of persons e.g. death 
rates per 100,000 people. 
Hazard models are more typically scaled to 
a single person. 
Pharmacokinetic models are scaled to the 
dose. In this example a unit dose is 
assumed for the time course of 
concentration. 
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The Kaplan-Meier Plot 

and Survivor Function

Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 

4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). 

Lancet. 1994;344:1383-89.

Relative Risk=0.7 (0.58-0.8 95%CI)
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Hazard and Survival
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The probability of a having an event at a 
particular time can be predicted by 
describing the hazard for the event. Hazard 
is the instantaneous rate of the event. As 
time passes the cumulative hazard predicts 
the risk of having the event over the interval 
0-t. 
The hazard model can be of any form but 
the hazard cannot be negative. 
The risk is the cumulative hazard. It is 
obtained by integrating hazard with respect 
to time. 
The probability of survival (not having the 
event)  can be predicted from the 
cumulative hazard. This is called the 
survivor function.  
The probability of having an event at a 
particular time is predicted by the probability 
density function (pdf(t)). The pdf can be 
calculated from the survivor function and 
hazard at that time. 
The cumulative density is the integral of the 
pdf. 
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Survivor Function
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beta0=1 
betaWB=1 
betaTRT=-logn(2) 
 
hazpla=if (time>0) then 
beta0*exp(betaWB*logn(time)) else 0 
haztrt=if (time>0) then 
beta0*exp(betaWB*logn(time)+betaTRT) 
else 0 
 
init(cumpla)=0 
d/dt(cumpla)=hazpla 
survpla=exp(-cumpla) 
 
init(cumtrt)=0 
d/dt(cumtrt)=haztrt 
survtrt=exp(-cumtrt) 
 
pdfpla=survpla*hazpla 
pdftrt=survtrt*haztrt 
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Cumulative Hazard and

Relative Risk

year

N
C

u
m

H
a
z
T

rt
, 

N
C

u
m

H
a
z
P

la

R
e
lR

is
k

 

 

Slide 
11 

©NHG Holford, 2009, all rights reserved.

Probability Density Function
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Pharmacokinetic Survival

Non-Linear 
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If the hazard varies with time (or a function 
of time, such as concentration) then exactly 
the same relationships between hazard, risk 
and survival exist as for the constant hazard 
case. It is possible to make non-linear 
pharmacokinetic model predictions of the 
amount eliminated and the time course of  
concentration using survival analysis 
functions. 
 
 



Slide 
13 

©NHG Holford, 2009, all rights reserved.

Non-linear PK and Survival

dose=100

v=1

vmax=100

km=50

rateconstant=(vmax/v)/(km+conc)

init(conc)=dose/v

d/dt(conc)= -rateconstant*conc

init(cumconstant)=0

d/dt(cumconstant)=rateconstant

survival=dose*exp(-cumconstant)

Time Conc Survival

0 100 100

1 42.6303 42.6303

2 10.8858 10.8858

3 1.76793 1.76793

4 0.246655 0.246655

5 0.033524 0.033524

6 0.00454 0.00454

7 6.14E-04 6.14E-04

8 8.32E-05 8.32E-05

9 1.13E-05 1.13E-05

10 1.52E-06 1.52E-06
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Distribution of Survival Times

Michaelis-Menten Elimination
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A useful view of survival is to look at the 
probability density function for the survival 
times. 
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Baseline Hazard Functions

h(t)  
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Gompertz

Exponential

Weibull

undefined but everyone for Similarh(t)  Cox Proportional

Non-Parametric: No good for simulation. Tricky with time varying hazards.

Parametric: Can be used for simulation and time varying hazards

 

The hazard function is associated with a 
distribution of event times. Some common 
distributions have names e.g. Gompertz 
(one of the first mathematicians to explore 
survival analysis). Standard baseline hazard 
functions used by statisticians are chosen 
for their mathematical simplicity rather than 
any biological reason. 
The biology of event time distributions is 
largely based on descriptive and empirical 
approaches. However, the hazard is the 
way to introduce biological mechanism and 
understanding the variability of time to event 
distributions. 
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Explanatory Variable Functions
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Linear and non-linear functions of explanatory variables

 

The explanatory variable function is quite 
empirical. This form is used because there 
are some simple solutions for integrating the 
hazard and the exponential form ensures 
that the hazard is always non-negative. 
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Exponential Coefficients and the 

Hazard Ratio

nSEX xnSEXx
e

...

0
11h(t)  

If the explanatory variable is 0 for females and 1 for males 

and the value of βSEX is 0.693 then the hazard ratio for men is 

2 (compared to women). 

 

The coefficients of the exponential function 
are convenient for describing how the 
hazard varies with the explanatory variable. 
Exponentiation of the coefficient gives the 
hazard ratio for the effect of the explanatory 
variable. 
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How can the effect of treatment 

Rx(t)  be described?

h(t) = f(sex, race, age(t), Rx(t),…)

Rx(t)

 

Standard survival analysis can include 
varying age implicitly. Adding time-varying 
covariates for survival analysis is harder to 
do because of the need to integrate the 
hazard. 
Drug treatments will often change with time 
and if expressed in terms of drug 
concentration the hazard could change in 
proportion to concentration after every dose. 
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Hazard models link disease progress and 

clinical outcome probability
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Joint Models

 Basic concept

Compute LIKELIHOOD for ANY kind of response

 Predict likelihood of time of event instead of  

the time of event

 All types of response can be combined

 

Any kind of response, continuous or non-
continuous, can be combined in a 
NONMEM model by using the joint 
likelihood computed for each observation.  
It is up to the user to compute the likelihood 
(or -2LL) for any non-continuous responses. 
In NONMEM VI the F_FLAG variable is 
used to distinguish the type or prediction 
being made. 
In NONMEM V  user written CCONTR is 
used to tell NONMEM how to compute the 
likelihood (or -2LL) for continuous 
responses.  
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Applications
 Continuous Response

» Standard PKPD

 Non-continuous Response
» Binary Response

– Awake or Asleep

» Ordered Categorical Response
– Neutropenic adverse event type

» Count Response
– Frequency of epileptic seizures

» Time to Event
– Bone fracture

» Dropout
– Missing data

 Joint Response
» Continuous plus non-continuous

 

NONMEM  (and many other parameter 
estimation procedures) uses the likelihood 
to guide the parameter search. The 
likelihood is the fundamental way to 
describe the probability of any observation 
given a model for predicting the observation. 
NONMEM shields us from the details for 
common PKPD models that use continuous 
response scales for the observation (e.g. 
drug concentration, effect on blood 
pressure). 
 
A variety of non-continuous responses are 
widely used to describe drug effects – 
especially clinical outcomes. By computing 
the likelihood directly for each of these kinds 
of response we can ask NONMEM to 
estimate parameters for any mixture of 
response types. 
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NONMEM

 NONMEM Maximises the Likelihood

 $ESTIMATION

METHOD=CONDITIONAL LAPLACIAN

LIKE or -2LL

 

NONMEM maximises the likelihood when 
estimating parameters. 
 
There is a pair of default subroutines 
(CCONTR and CONTR) that are used to 
compute the Conditional CONTRibution to 
the likelihood. 
 
The NM-TRAN $ESTIMATION record can 
have an option that allows the user to 
directly return the likelihood or -2LL instead 
of letting NONMEM compute it with its 
CCONTR and CONTR subroutines. This 
option always requires the CONDITIONAL 
method (FOCE) and is thought to work 
better if the LAPLACIAN option is used. 
NONMEM VI allows the user to perform joint 
modelling of different types of data by using 
the F_FLAG variable to indicate what is 
returned by the prediction for Y. 
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Likelihood for Continuous 

Variable
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For a continuous response type (the default 
for NONMEM) the likelihood is computed 
using the extended least squares objective 
function (ELS). Each observation (Yobs) 
and each prediction (Ypred), along with the 
predicted variance of the difference between 
Yobs and Ypred (Var) are used to compute 
a contribution to the ELS objective function. 
This contribution is summed over all 
subjects and all observations to compute -2 
times the log of the likelihood. Actually its 
not quite -2LL but proportional to it. It is 
missing a constant (NOBS*Ln(2*Pi)) but this 
is not needed in order to minimize -2LL and 
obtain maximum likelihood estimates. 
 
The likelihood of non-continuous types of 
event will depend on the type of event. The 
likelihood of an event at time t is given by 
the probability density function at that time. 
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Likelihoods for Survival

http://en.wikipedia.org/wiki/Survival_analysis

= S(Ti|θ) * h(Ti)
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Time Varying Hazard (CP) 

With Right Censoring using NONMEM

$ESTIM MAXEVAL=9990 METHOD=COND 

LAPLACE LIKE

$THETA

10  FIX    ; POP_CL

100 FIX    ; POP_V

0.1        ; POP_BETA

(0,0.01)   ; BASE

;Random effect for baseline hazard

$OMEGA 0.01 ; PPV_HAZ 

$SUBR ADVAN=6 TOL=3

$MODEL

COMP=(CENTRAL)

COMP=(CUMHAZ)

$PK

CL=THETA(1)

V=THETA(2)

BETA=THETA(3)

BASHAZ=THETA(4)*EXP(ETA(1))

$DES

DCP=A(1)/V

DADT(1)=-CL*DCP

DADT(2)=BASHAZ*EXP(BETA*DCP)

$ERROR

CP=A(1)/V

RISK=A(2)       ; cumulative hazard

SURV=EXP(-RISK)

IF (DV.EQ.0) THEN

Y=SURV        ; right censored event

ELSE

HAZNOW=BASHAZ*EXP(BETA*CP)

Y=SURV*HAZNOW ; Like of having an

; event at time=TIME

ENDIF

 

Estimation of the parameters of any hazard 
model can be done using this kind of code. 
It uses ADVAN6 to integrate the hazard and 
obtain the cumulative hazard. The 
cumulative hazard is used in $ERROR to 
calculate the probability of survival (SURV) 
i.e. the likelihoodof not having the event at a 
particular time (DV=0). If the event occurs 
(DV=1) at the time of the record then the 
likelihood is determined by the probability 
density function at that time i.e. S(t)*h(t). 
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Right Censored Data

Single Event

#ID TIME DV AMT Comment

1 0 0 100 Dose

1 50 1 0 Event

2 0 0 100 Dose

2 75 1 0 Event

3 0 0 100 Dose

3 100 0 0 Censored Event

4 0 0 100 Dose

4 25 1 0 Event

5 0 0 100 Dose

5 100 0 0 Censored Event

 

Single event observations (e.g. death) have 
just one observation event. 
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Interval Censored Time to Event
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Using NONMEM nomenclature, DV is a the 
observed event state. If it is 0 it means the 
subject has not had the event. If it is 1 then 
the subject had an event at some time 
between the last observation the end time 
when it is known they have had an event 
since the last observation time. 
At the time a subject is known to have 
dropped out (DV=1) the likelihood of 
dropping out in the interval between the last 
observed time and the end time is given by 
the difference in the survivor function at the 
last observed time and the survivor function 
at the end time. 
These two survivor functions can be 
computed from cumulative hazards from 0 
to the last observed time and from 0 to the 
end time. 
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Disease Progress and Time Varying Hazard

with Interval Censoring (NM7 or NMVI)

$INPUT ID TRT TIME DV DVID

$ESTIM MAX=9990 SIG=6 NOABORT

METHOD=CONDITIONAL LAPLACE

$SUBR ADVAN=6 TOL=6

$MODEL

COMP=(CUMHAZ)

$PK

IF (NEWIND.LE.1) SRVZ=1 ; Survival(0) is 1

BSHZ=THETA(1) ; Baseline hazard

BETADP=THETA(2) ; Disease progress hazard

EFFECT=TRT*THETA(3)

INTRI=(THETA(4)+EFFECT)*EXP(ETA(1))

SLOPI=THETA(5)*EXP(ETA(2))

$DES

DISPRG=INTRI + SLOPI*T

EXPHAZ=EXP(BETADP*DISPRG)

DADT(1)=BSHZ*EXPHAZ ; h(t)

$ERROR

CHZT=A(1) ; Cum hazard at this time

IF (DVID.NE.2) THEN

F_FLAG=0 ; CONTINUOUS ELS

Y=INTRI + SLOPI*TIME + ERR(1); Biomarker

ENDIF

SRVT=EXP(-CHZT) ; Survival at t

IF (DVID.EQ.2.AND.DV.EQ.0) THEN

F_FLAG=1 ; LIKELIHOOD

Y=SRVT   ; Like no event

ENDIF

IF (DVID.EQ.2.AND.DV.EQ.1) THEN

F_FLAG=1 ; LIKELIHOOD

Y=SRVZ-SRVT ; Like event

ENDIF

IF (DVID.EQ.3) THEN ; Last obs before event

SRVZ=SRVT ; remember survival

ELSE

SRVZ=SRVZ ; keep NM-TRAN happy

ENDIF

 

This illustrates joint modelling for disease 
progress and an event. The event hazard 
depends on disease progress. 
A differential equation is used to integrate 
the hazard.  
An effect of treatment (TRT) is assumed to 
affect the intercept of the disease progress 
model which in turn influences the hazard of 
the event. 
 
When using NMVI it is possible to save the 
value of the survivor function even if the 
hazard involves a random variable (i.e. an 
ETA is used in the computation). The same 
method can be used with NMV if there is no 
random variable in the hazard. In this 
example DVID=3 is used to indicate the 
start of the interval censored event period 
and the survivor function (SRVT) is saved in 
the variable SRVZ. Note to keep NM-TRAN 
happy it is necessary to explicitly include the 
assignment of SRVZ for records with DVID 
not equal to 3. 
 
The F_FLAG variable is used to tell 
NONMEM how to use the predicted Y value. 
F_FLAG of 0 is the default i.e. Y is the 
prediction of a continuous variable. F_FLAG 
of 1 means the prediction is a likelihood. 
F_FLAG of 2 means the prediction is -
2*ln(Likelihood). 
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Interval Censored Data (NM7 or NMVI)

ID 2: Event is between time 25 and 50. 

#ID TRT TIME DV DVID Comment

1 1 0 -0.6 1 Biomarker Obs

1 1 25 28.1 1 Biomarker Obs

1 1 50 53.2 1 Biomarker Obs

1 1 75 81.8 1 Biomarker Obs

1 1 100 108.7 1 Biomarker Obs

1 1 100 0 2 Censored Event

2 0 0 0.1 1 Biomarker Obs

2 0 25 28.8 3 Last Non-event Obs

2 0 50 1 2 End Event Interval

 

The NONMEM VI dataset format is shown 
here (can be used with NMV if the hazard 
does not involve a random variable) 
When DVID is 1 this means the DV 
observation is of the disease state (e.g. viral 
load). 
When DVID is 2 this means the DV 
observation is event status (0=censored 
event, 1=had event) 
When DVID is 3 this means this is the last 
observation time before the interval 
censored event 
In this example the first subject did not have 
an event during the study and the final 
record has DV=0 to indicate this. 
The second subject had an event between 
time 25 and 50. The DVID is 3 at time 25 to 
indicate this is the last time the subject was 
known not to have the event. The final 
record for this subject indicates that they 
were known to have had the event by time 
50. 
The TRT data item is 0 for placebo and 1 for 
active treatment. 
The LOCF data item is used when testing 
the random missingness model. 
 
 
 



Slide 
30 

©NHG Holford, 2009, all rights reserved.

Bone Fractures and Hormone 

Replacement Therapy

Integration of PKPD, Disease 

Progress and Hazard to Explain 

the Time Course of Benefit
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JAMA, 2003;290:1729-1738

Derived from Kaplan-Meier survival

 

NOTE: Ca/vitamin D at doses administered 
show increases in BMD without added 
reduction in fracture (hip and total fracture) 
Jackson RD, LaCroix AZ, Gass M, Wallace 
RB, Robbins J, Lewis CE, et al. Calcium 
plus Vitamin D Supplementation and the 
Risk of Fractures. N Engl J Med. 2006 
February 16, 2006;354(7):669-83. 
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Bone Mineral Density – Slow Biomarker

Women‟s Health Initiative Randomized Trial

Simulated

Observed Analysis with Christine Garnett (CDDS/FDA)
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The Women‟s Health Initiative trial observed 
the time course of changes in bone mineral 
density in 1000 women who were treated 
with placebo or with hormone replacement 
therapy. Both groups were treated with 
vitamin D and calcium. Half of the placebo 
patients were given placebo vitamin D and 
calcium. 
This plot is a visual predictive check 
showing the median and 90% interval for 
the observed (black) and predicted (red) 
BMD changes. The increase in BMD in the 
placebo group (and some of the change in 
the HRT group) is attributable to treatment 
with vitamin D and calcium. 
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BMD Time Course

Total Hip Lumbar Spine
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These figures shows some key results for 
the Hip and Spine models which  represent 
the two different types of bone. 
Teq for lumbar spine 0.81 y. Teq for hip 
1.53 y. 
For the hip bone, there was a trend for bone 
loss with a progression rate of less than 
0.01% per year. 
Maximum treatment effect was estimated to 
be 6% of baseline.  But by year 6, 94% of 
treatment effect was observed. 
 
For spine, women gained bone mass during 
the trial. Approximately 52% of the women‟s 
progression rate was 0.1% per year and the 
remaining women gained bone with a rate of 
0.5% per year. 
Maximum treatment effect from hormones 
was approximately 6% of baseline. Due to 
the shorter equilibration T1/2, maximum 
treatment effect was observed by year 4. 
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Hazard Model for Fractures 
Constant and Time Varying Explanatory Factors

)exp()( )()(0 0 DEDPtAGEBMD EEEEth

EAGE(t)
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EBMD0

EE(D)

EDP
Disease Progress

Drug Effect

Baseline

Time

 

Key to our modeling approach was to 
specify the hazard model for fractures as a 
function of Bone Mineral Density.   
Instead of using the predicted BMD as a 
single time-varying covariate in the hazard, 
we chose to parameterize the hazard 
function by including each component of the 
disease status model as a covariate. This 
allowed us to assess the relative 
contributions of each component to the risk 
of fracture. 
Some women had more than one fracture 
which allowed the between subject 
difference in hazard to be estimated (η). 
This kind of random effects model is called 
a „frailty model‟ in the statistical survival 
analysis literature. 
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Baseline BMD, Age and Treatment 

Effect are Predictors of Fracture
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This is a deterministic simulation of the final 
fracture model using total body BMD 
NOTE: Ca/vitamin D at doses administered 
show increases in BMD without added 
reduction in fracture (hip and total fracture. 
JAMA 2006) 
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How Good is the Model Prediction?
WHI First Fracture
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A Visual Predictive Check for Time to Event

Based on Kaplan-Meier Estimates of S(t)
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Simulated data used the 
same censoring as in the 
original data set

 

The slide shows a predictive check using 
the Kaplan-Meier method to generate the 
predicted uncertainty in the survivor function 
(based on 500 replications of the WHI data 
set). 
The 90% predictive interval for placebo is 
shaded in orange and the blue represents 
the predictive interval for E+P.  The black 
lines represent the observed probability of 
no fracture. 
Overall, we concluded that the model 
describes the observed data well.  
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Putting Time Back 

into The Picture

“Science is either

stamp collecting or physics”
Ernest Rutherford

Stamp

Collecting
PhysicsModels

Biomarker

+

Time

Outcome
Hazard

+

Time
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Backup Slides
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Joint Model NMV

$DATA ID TIME AMT TYPE DV

$ESTIM MAXEVAL=9990 METHOD=COND LAPLACE 

NOABORT

$SUBROUTINE ADVAN=2 TRAN=2 

CCONTR=..\ccontr_like.for 

CONTR=..\contr.for

$CONTR DATA=(TYPE)

$ERROR

; Continuous response 

CP=F

CPEST=CP + ruv_sd

; Non-continuous response

BASE=LOG(BASEP/(1-BASEP))

LGST=BASE + BETA*CP + PPV_EVENT

ODDS=EXP(LGST)

P1=ODDS/(1+ODDS)

IF (DV.EQ.1) ODDEST=P1

IF (DV.EQ.0) ODDEST=1-P1

IF (TYPE.LE.2) THEN

Y=CPEST ; continuous

ENDIF

IF (TYPE.EQ.3) THEN

Y=ODDEST ; non-continuous

ENDIF

 

This is a simple example of a continuous 
response (PK model defined with ADVAN2) 
and a non-continuous binary response 
(defined by a logistic model).  
The TYPE data item is used to signal in 
$ERROR which kind of response to return in 
the variable Y.  
The $CONTR record tells the CCONTR 
subroutine what meaning it should attach 
the TYPE data item. 
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CCONTR

SUBROUTINE CCONTR (ICALL,CNT,P1,P2,IER1,IER2

SAVE

C LVR and NO should match values in NSIZES

PARAMETER(LVR=30,NO=50)

COMMON /ROCM4/ Y(NO),DATA(NO,3)

DOUBLE PRECISION CNT,P1,P2,Y

DIMENSION P1(*),P2(LVR,*)

TYPE=DATA(1,1)

C Value of TYPE is provided as a user defined data item

IF (TYPE.EQ.1)THEN

C CELS is used for continuous type data

CALL CELS(CNT,P1,P2,IER1,IER2)

ELSE

C CLIK is used for LIKE or -2LL

C first argument is 1 for LIKE and 2 for -2LL

CALL CLIK(1,CNT,P1,P2,IER1,IER2)

ENDIF

RETURN

END

 

The format of the user supplied CCONTR is 
shown here. It can be used quite generally. 
The main user specific feature is to use the 
value of TYPE (which is determined by a 
value in the data set) to choose which 
method should be used t compute the 
contribution to the likelihood.  
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Time Varying Hazard

with Interval Censoring (NMV)
$INPUT ID TRT TIME CMT LOCF

DV MDV DVID

$ESTIM MAX=9990 SIG=6 NOABORT

METHOD=CONDITIONAL LAPLACE

$CONTR DATA=(DVID)

$SUBR ADVAN=6 TOL=6

CONTR=contr.for CCONTR=ccontr_like.for

$MODEL

COMP=(CUMHAZ)

COMP=(HZLAST,INITIALOFF)

$PK

BSHZ=THETA(1) ; Baseline hazard

BETA=THETA(2) ; Random missing

BET2=THETA(3) ; Informative missing

EFFECT=TRT*THETA(4)

INTRI=(THETA(5)+EFFECT)*EXP(ETA(1))

SLOPI=THETA(6)*EXP(ETA(2))

$DES

DISPRG=INTRI + SLOPI*T

EXPHAZ=EXP(BETA*LOCF + BET2*DISPRG)

DADT(1)=EXPHAZ ; Observed + Unobserved h(t)

DADT(2)=EXPHAZ ;Unobserved h(t)

$ERROR

CHZT=BSHZ*A(1) ; Cum hazard overall

CHZINT=BSHZ*A(2) ; Cum hazard from last obs

CHZTM1=CHZT-CHZINT ; Cum hazard upto last obs

IF (DVID.EQ.1) THEN

Y=INTRI + SLOPI*TIME + ERR(1); Biomarker

ENDIF

SRVT=EXP(-CHZT) ; Survival at t

IF (DVID.EQ.2.AND.DV.EQ.0) THEN

Y=SRVT ; Like no event

ENDIF

IF (DVID.EQ.2.AND.DV.EQ.1) THEN

SRVTM1=EXP(-CHZTM1) ; Survival at t lastobs

Y=SRVTM1-SRVT       ; Like event

ENDIF

 

NMV requires a more complex data 
structure and two differential equations if 
there is a random effect used to compute 
the hazard. The data table has to turn on 
the second integration compartment at the 
start of the interval during which the event 
occurs. The cumulative hazard up to the 
start of this interval is then computed by 
subtracting the hazard cumulated in the 
interval from the cumulative hazard at the 
end of the interval. 
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Interval Censored Data (NMV)

ID 2: Event is between time 25 and 50. 

Cumulative Hazard compartment is turned on at 25 (CMT=2).

#ID TRT TIME CMT LOCF DV MDV DVID EVID Comment

1 1 0 1 0 -0.6 0 1 0 Biomarker Obs

1 1 25 1 -0.6 28.1 0 1 0 Biomarker Obs

1 1 50 1 28.1 53.2 0 1 0 Biomarker Obs

1 1 75 1 53.2 81.8 0 1 0 Biomarker Obs

1 1 100 1 81.8 108.7 0 1 0 Biomarker Obs

1 1 100 1 108.7 0 0 2 0 Censored Event

2 0 0 1 0 0.1 0 1 0 Biomarker Obs

2 0 25 1 0.1 28.8 0 1 0 Last Non-event Obs

2 0 25 2 28.8 0 1 0 2 Turn On Cum Hazard

2 0 50 1 28.8 1 0 2 0 End Event Interval

 

The NONMEM V dataset format is shown 
here. 
When DVID is 1 this means the DV 
observation is of the disease state (e.g. viral 
load). 
When DVID is 2 this means the DV 
observation is event status (0=censored 
event, 1=had event) 
The CMT data item is set to 2 at the time of 
the last observation prior to the event. This 
turns on this compartment so that it 
accumulates the hazard of the event. 
In this example the first subject did not have 
an event during the study and the final 
record has DV=0 to indicate this. 
The second subject had an event between 
time 25 and 50. A special event record 
(EVID=2) is used to set the CMT variable to 
2 and turn on the second compartment. The 
final record for this subject indicates that 
they were known to have had the event by 
time 50. 
The TRT data item is 0 for placebo and 1 for 
active treatment. 
The LOCF data item is used when testing 
the random missingness model. 
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Likelihood for Count Response

;Stirlings formula for log DV factorial

IF (DV.GT.1) THEN

LDVFAC=(DV+.5)*LOG(DV)-DV+.5*LOG(6.283185)

ELSE

LDVFAC=0

ENDIF

Y=-2*(-COUNT+DV*LOG(COUNT)-LDVFAC)

$ESTIM MAXEVAL=9990 METHOD=COND LAPLACE -2LL

$ERROR

COUNT=BaseCount + Beta*CP + ppv_event

;Simulate count

IF (ICALL.EQ.4) THEN

T=0

NEVENT=0

DO WHILE (T.LT.1)

CALL RANDOM (2,R)

T=T-LOG(1-R)/COUNT

IF (T.LT.1) NEVENT=NEVENT+1

ENDDO

DV=NEVENT

ENDIF

 

Counts are a special kind of categorical 
response. The probability of a count can be 
predicted using the Poisson distribution.  
 
This NM-TRAN fragment shows how 
Stirling‟s formula is used to calculate the 
natural log of the factorial of the observed 
count. This is used in the last line to predict 
the probability of the observed count (DV) 
and the predicted count (COUNT). 
 
The ICALL.EQ.4 block shows how to 
simulate a count under the Poisson 
distribution (Frame et al 2003).  The LOG(1-
R) is required rather than the simpler 
LOG(R) because it is possible that R is 0 
but it cannot be 1. Thus the LOG(1-R) code 
avoids an error caused by LOG(0). 
 
The theory why this algorithm works is 
mathematically complex. Mats Karlsson 
(nmusers 2009) described a simple view: 
“The code is simulating one event after 
another on a time interval standardized by 
lambda. You sample a survival probability, 
translate that into a time, check if it is 
beyond the standardized interval, if not 
increase N and add the event time to the 
elapsed time in the interval. “ 
 
Frame B, Miller R, Lalonde RL. Evaluation 
of Mixture Modeling with Count Data using 
NONMEM. Journal of Pharmacokinetics and 
Pharmacodynamics. 2003;30(3):167-83. 
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“Standard Survival Analysis”

SAS, Splus etc

 Two Part Hazard
» Baseline Hazard function

» Explanatory Variable function

 Parametric Baseline
– Exponential

– Weibull

– Etc

 Non-parametric Baseline
– Cox Proportional hazard

 

Standard approaches to survival analysis 
implicitly divide the hazard into the baseline 
hazard and an explanatory variable hazard 
function. 
 
The Cox proportional hazard method is 
used to test differences of survival time 
distributions. It makes the assumption that 
the baseline hazard is the same in the two 
groups that are being tested but make no 
explicit assumption about the baseline 
hazard shape. The baseline hazard is 
therefore considered to be defined by a non-
parametric assumption. In combination with 
a parametric explanatory variable function 
the overall procedure is called semi-
parametric. 
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Parametric Regression

In Standard Packages

 Estimation of hazard parameters is done after 
transformation e.g. ln(T)

 Explanatory variable model is then linear regression e.g. for 
Weibull

ipipiii xxx)(T ...ln 2211  

Note that covariates (x1…xp) are usually assumed to be time invariant

Standard survival analysis is equivalent to non-compartmental PK

ipipiii xxxT ...)ln(
1

)ln( 2211

Or more generally

 

When covariates change with time then the 
hazard must be integrated in a piecewise 
fashion. This is exactly analogous to PK 
problems. If clearance changes from one 
time period to the next then the 
concentration prediction must be done 
piecewise (NONMEM describes this as 
„advancing the solution‟) 
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Combined Response Models

 Continuous Response

» Standard PKPD

– Bone Mineral Density

 Non-continuous Response

» Time to Event

– Treatment Discontinuation

– Bone fracture

 Combined Response

» Continuous plus non-continuous

 

NONMEM  (and many other parameter 
estimation procedures) uses the likelihood 
to guide the parameter search. The 
likelihood is the fundamental way to 
describe the probability of any observation 
given a model for predicting the observation. 
NONMEM shields us from the details for 
common PKPD models that use continuous 
response scales for the observation (e.g. 
drug concentration, effect on blood 
pressure). 
 
A variety of non-continuous responses are 
widely used to describe drug effects – 
especially clinical outcomes. By computing 
the likelihood directly for each of these kinds 
of response we can ask NONMEM to 
estimate parameters for any mixture of 
response types. 
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Randomization Test
Simulated Linear Disease Progress Plus CRD

Model Comparison CritOBJ Low High F success

Null: CRD Alternate: RD 3.75 3.27 4.25 95%

Null: CRD Alternate: ID 3.67 3.33 4.17 95%

1000 subjects observed at ti = 0, 25, 50, 75 and 100

1000 replications; RD and ID: One extra parameter

Bootstrap mean and 95% confidence interval

Slope 1 u/time SD 1 u

Baseline 0.01

ID hazard 0.0

Average Dropout 50% (95 percentile 47-53%)

Type I error rate 5%

CRD

 

Hu and Sale investigated the three models 
for missingness using real data sets. They 
distinguished between the models by 
assuming the difference in -2 times the log 
likelihood was distributed according to the 
chi-square distribution. 
This assumption was tested by simulating 
data under the completely random dropout 
model and then fitting it with the same 
model and with the random and informative 
dropout models. 
The probability of being observed to have 
dropped out is shown using the CRD model 
in the graph. Overall about 50% of subjects 
are expected to drop-out during the time 
from 0 to 100. 
The addition of one extra parameter with 
either the RD or ID models required a large 
change in objective function to reject the null 
with a 5% Type I error rate. Over 90% of 
runs minimized successfully with both the 
null model (CRD) and the alternate model 
(RD or ID). 
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LIKE vs -2LL Methods

ID Bias and Imprecision

LIKE Success 79% 7 h 4 min -2LL Success 44% 7h 53 min

Bias loCI hiCI RMSE Bias loCI hiCI RMSE

Slope 0.01% -0.14% 0.17% 0.7% 0.1% -0.11% 0.3% 0.67%

PPVslope -0.15% -0.77% 0.46% 2.7% -0.23 -0.77 0.32 2.6%

Baseline 2.3% -1.3% 5.8% 15.8% 15% 11% 17% 10%

ID hazard -0.16% -0.8% 0.5% 2.9% -2.2% -2.7% -1.7% 1.7%

1000 subjects observed at ti = 0, 25, 50, 75 and 100

100 replications

Slope 1 u/time SD 1 u

Baseline 0.0001

ID hazard 0.065

Average Dropout 53% (95 percentile 50-56%)

ID

 

The influence of using the two different 
methods (CCONTR and -2LL) for computing 
the contribution to the likelihood was 
investigated by Monte Carlo simulation. The 
probability of being observed to have 
dropped out is shown using an informative 
dropout model in the graph. Overall about 
50% of subjects are expected to drop-out 
during the time from 0 to 100. 
A disease progress observation was made 
on up to 4 occasions after entry to the study. 
During simulation the ID model was used to 
predict if drop-out occurred between the last 
visit and the current visit. A linear disease 
progress model with fixed intercept of 0 was 
used to describe the disease progress state. 
Simulated data were then fitted to the ID 
model using NONMEM. 
The CCONTR method was faster and 
slightly more NONMEM runs minimized 
successfully. The bias and imprecision of 
the parameter estimates was similar for both 
methods. There were major biases in the 
estimated of the baseline and informative 
dropout hazard parameters. 
 
 

 


