Slide		
1		
	Time to Event Analysia	
	Time to Event Analysis	
	Nick Holford	
	Dept Pharmacology & Clinical Pharmacology	
	University of Auckland, New Zealand	
	@NHG Holford, 2009, all rights reserved.	
Slide		
2		
	Outline	
	Outline	
	 The Hazard: Biological basis for survival 	
	Ŭ	
	 The Pharmacokinetics of Survival 	
	 Joint Models of PKPD and Time to Event 	
	» Continuous	
	» Right censored	
	» Interval censored	
	» Interval censored	
	 An Example (fracture risk reduction) 	
	GNHG Holloid, 2009, all rights reserved.	
Slide		
3		
	Why do women live longer	
	withy do wonternive longer	
	than men?	
	FMUR Mellerer 1990 at fielder second	
	WWW IN FRANKIN, ALVAR, BEI 1986.	

Slide 22		NONMEM maximises the likelihood when estimating parameters.
	NONMEM	There is a pair of default subroutines (CCONTR and CONTR) that are used to compute the Conditional CONTRibution to
	 NONMEM Maximises the Likelihood 	
	• \$ESTIMATION METHOD=CONDITIONAL LAPLACIAN LIKE or -2LL	The NM-TRAN \$ESTIMATION record can have an option that allows the user to directly return the likelihood or -2LL instead of letting NONMEM compute it with its CCONTR and CONTR subroutines. This option always requires the CONDITIONAL method (FOCE) and is thought to work better if the LAPLACIAN option is used. NONMEM VI allows the user to perform joint modelling of different types of data by using the F_FLAG variable to indicate what is returned by the prediction for Y.
Slide	Likelihood for Continuous	For a continuous response type (the default
23	Variable	using the extended least squares objective function (ELS). Each observation (Yobs) and each prediction (Ypred), along with the predicted variance of the difference between Yobs and Ypred (Var) are used to compute a contribution to the ELS objective function.
	$Like_{ij} = \exp\left[-0.5 \cdot \left(\left(\frac{Y_{OBS,ij} - Y_{PRED,ij}}{SD_{ij}}\right)^2 + \ln \langle D^2_{ij} \cdot 2\pi \rangle\right)\right]$	This contribution is summed over all subjects and all observations to compute -2 times the log of the likelihood. Actually its not quite -2LL but proportional to it. It is missing a constant (NOBS*Ln(2*Pi)) but this is not needed in order to minimize -2LL and obtain maximum likelihood estimates.
		The likelihood of non-continuous types of event will depend on the type of event. The likelihood of an event at time t is given by the probability density function at that time.
Slide	CRMQ Hubot, 2006, all rights Issueved.]
24	Likelihoods for Survival	
	For an uncensored datum, with T_i equal to the age at death, we have	
	$\Pr(T = T_i \theta) = f(T_i \theta) = S(1_i \theta) * h(1_i)$ For a left censored datum, such that the age at death is known to be less than T_i , we have	
	$\Pr(T < T_i \theta) = F(T_i \theta) = 1 - S(T_i \theta)$	
	For a right censored datum, such that the age at death is known to be greater than T_i , we have	
	$\Pr(T > T_i \theta) = 1 - F(T_i \theta) = S(T_i \theta)$ For an interval consored datum, such that the age at death is known to be greater than T_i and less than T_i , we have	
	$\Pr(T_{i,l} < T < T_{i,r} \theta) = S(T_{i,l} \theta) - S(T_{i,r} \theta)$	
	http://en.wikipedia.org/wiki/Survival_analysis	
	GARG Halbut, 2009, all rights manived.	J

		1	
Slide 39	Backup Slides		
Slide 40	<pre>Subscience of the set time of time and time of time and time of time and time of time of time and time of time and time of time and time of time and time of time of time and time of time of time and time of ti</pre>		This is a simple example of a continuous response (PK model defined with ADVAN2) and a non-continuous binary response (defined by a logistic model). The TYPE data item is used to signal in \$ERROR which kind of response to return in the variable Y. The \$CONTR record tells the CCONTR subroutine what meaning it should attach the TYPE data item.
Slide 41	<pre>CCCONTRACT CCCONTRACT CCCCONTRACT CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC</pre>		The format of the user supplied CCONTR is shown here. It can be used quite generally. The main user specific feature is to use the value of TYPE (which is determined by a value in the data set) to choose which method should be used t compute the contribution to the likelihood.

<u></u>		
Slide 42	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	NMV requires a more complex data structure and two differential equations if there is a random effect used to compute the hazard. The data table has to turn on the second integration compartment at the start of the interval during which the event occurs. The cumulative hazard up to the start of this interval is then computed by subtracting the hazard cumulated in the interval from the cumulative hazard at the end of the interval.
Slide 43	Interval Censored Data (NMV) İmportanti loc İmportanti loc İmportanti loc İmportanti loc İmportanti loc İmportanti loc İmportanti loc İmportanti loc İmportanti loc Importanti loc Importanti loc Distribution Importanti loc Distribution Importanti loc Distribution Importanti loc Distribution Importanti loc Distribution Importanti loc Distribution Importanti loc Distribution Importanti loc Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution Distribution	The NONMEM V dataset format is shown here. When DVID is 1 this means the DV observation is of the disease state (e.g. viral load). When DVID is 2 this means the DV observation is event status (0=censored event, 1=had event) The CMT data item is set to 2 at the time of the last observation prior to the event. This turns on this compartment so that it accumulates the hazard of the event. In this example the first subject did not have an event during the study and the final record has DV=0 to indicate this. The second subject had an event between time 25 and 50. A special event record (EVID=2) is used to set the CMT variable to 2 and turn on the second compartment. The final record for this subject indicates that they were known to have had the event by time 50. The TRT data item is 0 for placebo and 1 for active treatment. The LOCF data item is used when testing the random missingness model.

Slide 44		Counts are a special kind of categorical response. The probability of a count can be predicted using the Poisson distribution. This NM-TRAN fragment shows how Stirling's formula is used to calculate the natural log of the factorial of the observed count. This is used in the last line to predict the probability of the observed count (DV) and the predicted count (COUNT). The ICALL.EQ.4 block shows how to simulate a count under the Poisson distribution (Frame et al 2003). The LOG(1- R) is required rather than the simpler LOG(R) because it is possible that R is 0 but it cannot be 1. Thus the LOG(1-R) code avoids an error caused by LOG(0). The theory why this algorithm works is mathematically complex. Mats Karlsson (nmusers 2009) described a simple view: "The code is simulating one event after another on a time interval standardized by lambda. You sample a survival probability, translate that into a time, check if it is beyond the standardized interval, if not increase N and add the event time to the elapsed time in the interval. " Frame B, Miller R, Lalonde RL. Evaluation of Mixture Modeling with Count Data using NONMEM. Journal of Pharmacokinetics and Pharmacodynamics. 2003;30(3):167-83.
Slide 45	 Standard Survival Analysis" SAS, Splus etc Two Part Hazard Baseline Hazard function Explanatory Variable function Parametric Baseline Exponential Weibull Etc Non-parametric Baseline Cox Proportional hazard 	Standard approaches to survival analysis implicitly divide the hazard into the baseline hazard and an explanatory variable hazard function. The Cox proportional hazard method is used to test differences of survival time distributions. It makes the assumption that the baseline hazard is the same in the two groups that are being tested but make no explicit assumption about the baseline hazard shape. The baseline hazard is therefore considered to be defined by a non- parametric assumption. In combination with a parametric explanatory variable function the overall procedure is called semi- parametric.

Slide 46	Parametric Regression In Standard Packages • Estimation of hazard parameters is done after transformation e.g. In(T) • Explanatory variable model is then linear regression e.g. for Weibull $\ln(T_i) = \frac{1}{\gamma} \left\{ \ln(\lambda) - \beta_1 \cdot x_{1i} - \beta_2 \cdot x_{2i} - \dots - \beta_p \cdot x_{pi} + c_i \right\}$ Or more generally $\ln(T_i) = \mu + \alpha_i x_{1i} + \alpha_2 x_{2i} + \dots + \alpha_p x_{pi} + \sigma \cdot c_i$ Note that covariates (x1xp) are usually assumed to be time invariant Standard survival analysis is equivalent to non-compartmental PK	When covariates change with time then the hazard must be integrated in a piecewise fashion. This is exactly analogous to PK problems. If clearance changes from one time period to the next then the concentration prediction must be done piecewise (NONMEM describes this as 'advancing the solution')
Slide 47	Combined Response Models	 NONMEM (and many other parameter estimation procedures) uses the likelihood to guide the parameter search. The likelihood is the fundamental way to describe the probability of any observation given a model for predicting the observation. NONMEM shields us from the details for common PKPD models that use continuous response scales for the observation (e.g. drug concentration, effect on blood pressure). A variety of non-continuous responses are widely used to describe drug effects – especially clinical outcomes. By computing the likelihood directly for each of these kinds of response we can ask NONMEM to estimate parameters for any mixture of response types.
Slide 48	<section-header><section-header><section-header><section-header><section-header><text><text><text></text></text></text></section-header></section-header></section-header></section-header></section-header>	Hu and Sale investigated the three models for missingness using real data sets. They distinguished between the models by assuming the difference in -2 times the log likelihood was distributed according to the chi-square distribution. This assumption was tested by simulating data under the completely random dropout model and then fitting it with the same model and with the random and informative dropout models. The probability of being observed to have dropped out is shown using the CRD model in the graph. Overall about 50% of subjects are expected to drop-out during the time from 0 to 100. The addition of one extra parameter with either the RD or ID models required a large change in objective function to reject the null with a 5% Type I error rate. Over 90% of runs minimized successfully with both the null model (CRD) and the alternate model (RD or ID).

