Slide 1		TDM = Therapeutic Drug Monitoring TCI = Target Concentration Intervention
	TDM is Dead! Long Live TCI! Dose Individualization using Monitoring of Patient Response Nick Holford University of Auckland	
Slide 2	Objectives	
Slide 3	<section-header><table-cell><list-item><list-item><list-item><list-item><text><text><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></text></text></list-item></list-item></list-item></list-item></table-cell></section-header>	Therapeutic drug monitoring (TDM) is a traditional concept associated with empirical 'seat of the pants' dose adjustment determined by a measurement being outside a 'therapeutic range'. The therapeutic range is hard to identify and is often mistakenly justified because it seems to be similar to the normal reference range for endogenous substances. A concentration at the bottom of the range has a very different meaning (close to being ineffective) from one at the top (close to being toxic) but TDM practitioners usually ignore this and are happy to do nothing as long as the concentration is 'within range'. TDM is typically limited to measuring a response such as concentration without any clear understanding that the response needs to be used to predict the required dose and to then to administer that dose. Target concentration intervention (TCI) is a science based method that uses pharmacokinetic and pharmacodynamic principles to identify how patients are different in terms of parameters such as

		CL, V, Emax and C50 and give the dose needed to reach the target. The first component of TCI is to use the individual parameters to predict the dose required to achieve the target as explained above. The second component of TCI is administer the predicted dose in order to achieve the therapeutic target. It has been shown to improve clinical outcome as well as being a cost-effective use of health resources. Evans WE, Relling MV, Rodman JH, Crom WR, Boyett JM, Pui CH. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med. 1998;338(8):499-505. van Lent-Evers NAEM, Mathà 't RAA, Geus WP, van Hout BA, Vinks AATMM. Impact of Goal-Oriented and Model-Based Clinical Pharmacokinetic Dosing of Aminoglycosides on Clinical Outcome: A Cost-Effectiveness Analysis. Ther Drug Monit. 1999;21(1):63-73. Le Meur Y, Buchler M, Thierry A, Caillard S, Villemain F, Lavaud S, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant. 2007;7(11):2496-503. Holford NHG, Buclin TMD. Safe and effective variability - A criterion for dose individualization. Ther Drug Monit 2012;
Slide 4	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	 34: 565-68. Hale M, Nicholls A, Bullingham R, Hene R, Hoitsman A, Squifflet J, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther. 1998;64:672-83. Le Meur Y, Buchler M, Thierry A, Caillard S, Villemain F, Lavaud S, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant. 2007;7(11):2496-503. van Gelder T, Silva HT, de Fijter JW, Budde K, Kuypers D, Tyden G, et al. Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation. 2008;86(8):1043-51. Gaston RS, Kaplan B, Shah T, Cibrik D, Shaw LM, Angelis M, et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the Opticept trial. Am J Transplant. 2009;9(7):1607-19. Rousseau A, Laroche M-L, Venisse N, Loichot-Roselmac C, Turcant A, Hoizey G, et al. Cost-Effectiveness Analysis of Individualized Mycophenolate Mofetil Dosing in Kidney Transplant Patients in the APOMYGRE Trial. Transplantation. 2010;89(10):1255-62.

Slide 5	 TDM = goal was to reach exposure within therapeutic range in every prior doing action and the sposure within therapeutic range. 	K, Limwatt Therapeuti and allogra convention CYP3A5 g transplanta Pharmacol Thervet E, M, Ficheux Optimizatio using phar	hai S, Pongskul C, Kritmetapak ananon C, Vannaprasaht S. ic concentration achievement aft survival comparing usage of hal tacrolimus doses and enotype-guided doses in renal ation patients. Br J Clin I. 2019;85(9):1964-73. Loriot MA, Barbier S, Buchler (M, Choukroun G, et al. on of initial tacrolimus dose macogenetic testing. Clin I Ther. 2010;87(6):721-6.
	patient. Clinicians were given dosing advice.		
Slide	CREAD Hadios, 2019 al rights nasered.		
6	Why TDM Cannot Work		
	TDM proposes a range of concentrations to judge if an individual is getting the right dose		
	It is not reasonable to prescribe a range of doses in order to match the range of concentrations		
	Therefore the therapeutic range cannot be used to get the right dose		
	There is only one dose that can achieve the target concentration that will produce the target effect		
	CRAG hellost, 2019 al region manmat.		
Slide 7	Target Concentration in Clinical Use of Medicines Target Conc = Target Effect x C50 / (Emax-Target Effect) Target Conc Dose Model Initial Peak Loading Dose = Target Conc × Volume of Distribution	pharmacol pharmacol right dose How can th calculated model avai effect for m operative p degree witi effects. A c of morphin	concentration approach links kinetics (PK) with dynamics (PD) to predict the for a patient. The target concentration be if there is no pharmacodynamic ilable? Suppose the target norphine is to reduce post- bain to an acceptably mild hout unacceptable adverse commonly recommended dose e sulfate is 5 mg repeated
	Average Steady State Maintenance Dose Rate = Target Cone x Clearance Ideal dose prediction requires individual estimates of Emax, C50, V and CL	Zealand Fo morphine s this corres 3.76 mg/4 clearance i Ma et al. 2 concentrat The steady morphine i intravenou mg/L which	according to response (New prmulary 2019). Because sulfate is only 75% morphine ponds to a morphine dose of n or 0.94 mg/h. The plasma is about 86 L/h/70 kg (Holford, 012) so the steady state target ion is 0.94/86 = 0.011 mg/L. y state volume of distribution of s about 350 L/70 kg so the s loading dose is 350 L x 0.011 h is about 3.8 mg morphine or rphine sulfate. This loading

		dose is consistent with the usual starting dose of 5 mg morphine sulfate. This shows how the target concentration can be worked out based on doses that have already been worked out by trial and error. Holford NH, Ma SC, Anderson BJ. Prediction of morphine dose in humans. Paediatr Anaesth. 2012;22(3):209-22. New Zealand Formulary. Morphine monograph <u>https://nzf.org.nz/nzf_2515</u> 2019
Slide 8	<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	The pharmacodynamic parameters for medicines that use TCI are typically not well known. This is a reflection of the difficulty of measuring a clinical response that can be related to concentration. Holford NHG, Black P, Briant R, Couch R, Kennedy J. Theophylline target concentration in severe airways obstruction - 10 or 20 mg/L? A randomised concentration-controlled trial. <i>Clinical Pharmacokinetics</i> 1993; 25:495- 505 Holford NHG, Hashimoto Y, Sheiner LB. Time and theophylline concentration help explain the recovery of peak flow following acute airways obstruction. Population analysis of a randomised concentration controlled trial. <i>Clinical Pharmacokinetics</i> 1993; 25:506-515 Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128(16):1810-52.

Slide 9	Target Concentrations and Pharmacokinetic Parameters for Selected Medicines (70 kg standard individual). Css is the average steady state concentration.				Target concentrations and PK parameters are known for most medicines which are helped by TCI.	
	Drug Target Conc Clearance Volume of distribution				1	
	Aminoglycosides Tacrolimus** Phenytoin	<u>Css</u> 3 mg/L 10 mcg/L	6 L/h	18 L 100 L 45 L		
			20 L/h Vmax=415		-	
			mg/d, Km= 4mg/L			
	Digoxin Theophylline	1 ng/mL 10 mg/L	9 L/h 3 L/h	500 L 35 L		
	* 24 hour dosing	** whole blood sta			-	
Slide 10	Clin. Pharmacc Theophylli Obstructio A Randomisec Nicholas Holfor Department of F Auckland, New 2 Department of F 3 Department of F > Randor	n – 10 or 20 m d Concentration-C ^{d1} , Peter Black ¹ , Ron ^h armacology and Clinica Zealand ^{Dinical Chemistry, Auckli ^harmacy, School of Medi}	D5, 1993 centration in g/L? ontrolled Trial <i>Couch²</i> , Julia Kei 1 Pharmacology, Sche and Hospital, Aucklan cine, University of O ntration co	n Severe Airways unedy ³ and Robin Briant ¹ hol of Medicine, University of Auckla	nd,	For some drugs a so called therapeutic window of concentrations has been established by a similar trial and error approach. This range of concentrations is better thought of as an acceptable range but it does not define the target concentration. With the initial guidance of the acceptable range a clinical trial can compare potential target concentrations. This approach was used find the target concentration for starting treatment with theophylline in patients with severe airways obstruction (Holford, Black et al. 1993). Patients were randomized to targets of 10 and 20 mg/L and clinicians adjusted the dose after measuring concentrations to reach the target. This trial showed 10 mg/L was better than 20 mg/L. It produced a reasonable bronchodilator effect without serious adverse effects. The results were subsequently analyse to develop a pharmacodynamic model for theophylline(Holford, Hashimoto et al. 1993) (Holford 2017) Holford, N., P. Black, R. Couch, J. Kennedy and R. Briant (1993). "Theophylline target concentration in severe airways obstruction - 10 or 20 mg/L? A randomised concentration- controlled trial." <u>Clin Pharmacokinet</u> 25 (6): 495-505. Holford, N., Y. Hashimoto and L. B. Sheiner (1993). "Time and theophylline concentration help explain the recovery of peak flow following acute airways obstruction. Population analysis of a randomised concentration controlled trial." <u>Clin Pharmacokinet</u> 25 (6): 506-515. Holford, N. (2017). "Pharmacodynamic principles and the time course of immediate drug effects." <u>Transl Clin Pharmacol</u> 25 (4): 157-161.

Slide 11	How to Dose? Target Concentration Strategy 1. Choose Target Concentration 2. Determine V and CL using WT etc. 3. Calculate LD and MDR 4. Measure Response (e.g. Conc [,INR]) 5. Interpret Response Revise V and CL [,C50] 6. Goto Step 3	The target concentration strategy is an algorithm for reaching the best individual dose. It starts with choosing a target concentration (Sheiner and Tozer 1978). A group value for volume (V) and or clearance (CL) is determined before the medicine is given. These PK parameters are then used to calculate the initial loading dose (LD) and maintenance dose rate (MDR). A response is measured reflecting how the individual is different from the group of patients who are otherwise similar in weight, renal function, etc. If the response is a measure of drug effect e.g. INR, then it can be used to revise the target conc. If the response is a concentration then it can be used to revise V and CL. Most commonly the focus will be on CL so that a new individualized maintenance dose rate can be calculated. Sheiner, L. and T. Tozer (1978). Clinical pharmacokinetics: The use of plasma concentrations of drugs. <u>Clinical</u> <u>Pharmacology: Basic Principles of</u> <u>Therapeutics</u> . K. Melmon and H. Morelli. New York, Macmillan: 71-109
Slide 12	Determine Group V and CL (predictable variability) • Volume of Distribution * size $V = V_{pop} \times WT/WT_{std}$ * body composition • Clearance * size $CL = Cl_{pop} \times (WT/WT_{std})^{3/4}$ * renal function * hepatic function * concomitant drugs	WT=patient weight WTstd=standard weight e.g. 70 kg Vpop, CLpop=population volume and clearance in a standard subject e.g. 70 kg.

Slide		1	
21	Safe and Effective Variability		
	 CLINICAL JUDGMENT Suppose medicine use is safe and effective if: Individual Css is on average at the Target Conc 		
	The Safe and Effective Variability (SEV) is 13.6%		
Slide		1	The concept of an acceptable range for
22	The Acceptable Range		the population was first described in Matthews et al. 2004. It was subsequently explained in more detail in Holford & Buclin (2012). In order to avoid confusion with the therapeutic range used with TDM
	 Target Concentration Intervention proposes an acceptable range. 		it is preferable to use the term acceptable range.
	This is similar to the therapeutic range but is applied at the level of the population not the individual.		Matthews I, Kirkpatrick C, Holford N. Quantitative justification for target concentration interventionparameter variability and predictive performance using population pharmacokinetic models
	The acceptable range is used to decide on a dosing strategy for the population in order to determine the acceptable dose individualization method.		for aminoglycosides. Br J Clin Pharmacol. 2004;58(1):8-19. Holford NHG, Buclin TMD. Safe and effective variaality - A criterion for dose individualization. Ther Drug Monit. 2012;34(5):565-8.
	ENHO Hotort, 2019 all rights noarwed.	1	
Slide 23			There are 3 ways to think about choosing the dose. The population dosing method uses the
	Three Ways to Dose > Population		same dose for everyone. It is the most commonly used method but usually just for convenience. This means that some
	» Same dose for everyone		patients are either under-dosed or over- dosed.
	 The dream dosing method! (often used in adults) 		The group dosing method uses patient factors (also known as covariates) to predict the dose suitable for a group of
	Group (Covariate guided)		patients with similar factors. Dosing in
	» Same dose for similar group		children is nearly always based on weight
	 – e.g. same weight, CLcr, genotype (usually used for children) 		or age. The use of weight or renal function to adjust the dose is recommended for some medicines but probably not used as
	➤ Individual		often as it should be. Individual dosing based on patient
	» Dose determined by individual response – e.g. BP, INR, blood conc		response is widely used when the response is easily measured. For example anti-hypertensive doses are usually adjusted based on the blood pressure
			response. The use of other response markers such as the international normalized ratio (INR) response to warfarin or the concentration of an

Slide 26		
	Know Your Target	
	Be Courageous	
	 Target for drug development is to learn » the concentration effect relationship » safe and effective variability 	
	 Target for clinical practice is to confirm Target effect and target concentration Best method for achieving the target effect for the patient 	
	 PKPD provides the tools to achieve the targets time to move away from traditional empirical approaches. drug developers and clinicians must have courage to change 	
	> Take Aim and Hit the Target!	
	GNPG Hotors, 2019 all rights reserved.	