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1 INTRODUCTION 

 

With the rapidly changing health care and research environments, it has become essential that the drug 

development process achieve greater efficiency, cost-effectiveness and timeliness. A major component of 

drug development is drug testing in human for safety and efficacy. Past approaches to clinical drug 

development often resulted in much of the human clinical trials information being considered less than 

maximally informative, providing results which did not add new information that was relevant to the drug 

development and the approval process (Peck 1997). 

 

Simulation of clinical trials has recently gained attention as an emerging technique for knowledge 

synthesis and exploration of possible clinical trial results based upon a mathematical/stochastic model of 

the trial, including sub-models of the drug action and disease process (Hale et al. 1996, Peck & 

Desjardins 1996, ECPM 1996, CDDS 1997, FDA 1999, Peck 1997b, Krall et al. 1998). The basic 

rationale for computer simulation has existed for many years and the technique has been successfully 

used in several scientific and industrial application areas (Johnson 1998). The application of simulation in 

the domain of pharmaceutical medicine, clinical pharmacology and drug development has been largely 

restricted in the past to evaluation of statistical methodology and forecasting of individual or population 

pharmacokinetics. It is proposed that simulation has a much broader potential to aid in the clinical 

development, regulatory review, commercialization, and medical application process. As described in 

detail later, models will incorporate elements associated with the drug, the disease and the trial such as 

study design, dosage regimens, population pharmacokinetics and pharmacodynamics, disease 

progression, placebo response, compliance patterns, dropout rates, study end-points, sample schedules 

and statistical analysis approaches. The primary purpose of this new approach is to improve clinical 

development by  generating  better insights into the consequences of the choices made in the design of 

human trials, especially at the planning stage. 

 

2 GUIDING PRINCIPLES   

 

This document is motivated by the belief that a clear and public articulation of agreed upon “Good 

Practices” can aid in the development and application of model building linked to simulation of clinical 

trials. A shared language and defined approaches can provide a basis for meaningful communication 

among scientists and clinicians in the area of drug development. It is expected that the general 

acceptance of agreed upon good practices will advance the state of the art, promote better utilization of 
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the methodology and allow non-experts  to understand better  and usefully apply the results of a 

simulation investigation. The definition of “Good Practices” aims at  the following principles: 

 

CLARITY: The report of the simulation should be understandable in terms of scope and conclusions by 

intended users such as those responsible for committing resources to a clinical trial. 

COMPLETENESS: The assumptions, methods and critical results  should be described in sufficient detail 

to be reproduced by an independent team. 

PARSIMONY: The complexity of the models and simulation procedures should be no more than 

necessary to meet the objectives of the simulation project. Program codes sufficient to generate models, 

simulate trials and perform replication and simulation project level analyses should be retained but there 

is no need to store simulated trial and analysis results which can be reproduced from these codes. 

3 PLANNING A SIMULATION PROJECT 

 

One of the first tasks in approaching a simulation project is to identify clearly  the purposes of the activity 

and the consumers of the information provided by the project, typically the company-internal teams, but 

possibly also regulatory scientists who may be consulted about the trial. Brief projects that  are mostly 

exploratory in nature, involving few consumers, may have very modest needs for a plan of work. Most 

projects will require significant effort, however, where a thorough plan of work is needed for 

communication, efficiency, coherence of approach and, last but not least, for ensuring that adequate time 

and resources (in both manpower and computing) will be allocated. Just as a builder should have 

blueprints before starting construction of a new building, those undertaking the task of representing a 

clinical trial in mathematical terms and software code would do well to use a plan defined with a level of 

rigor that permits peers to examine  the assumptions and approach. Doing this  provides  some 

assurance that the specified needs will be met. In the remainder of this document, we refer to this as a 

“simulation plan”. 

 

3.1 Simulation Team  

 
The simulation objectives and aims should influence the composition of the simulation team. The core 

team would comprise  a specialist clinician (who may also be a trial investigator), a clinical 

pharmacologist, and a statistician. In case the mathematical modeling expertise is not adequately 

covered by these individuals, the presence of a pharmacometrician appears mandatory, especially in 

those cases where the PK and PD aspects are a substantial component of the model. At least one of 

these scientists must, obviously, have the talent to convert ideas, assumptions, premises as well as 
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mathematical/statistical models into software code. Other expertise may be necessary. For example, if 

there is a goal related to expected health-care costs, then a team member qualified for econometric 

modeling is needed. As simulations grow more complex and encompass multiple objectives, the 

simulation team will grow to an even greater level of cross-functionality. 

 

3.2 Simulation Plan 

 

Just as the protocol for a clinical study describes objectives, hypotheses and assumptions, trial 

parameters, methods, and analyses, so should the plan for a simulation project. The aim should be to 

produce a written document, with  enough detail  that another researcher can  obtain comparable 

(simulation) results by following the (simulation) plan. Care in preparation of the plan will provide the basis 

for critical review of the components of the simulation project, and will assist in implementation of the 

computer simulation.  

Development of the plan before commencing the numerical simulations provides a good opportunity for 

critical evaluation of assumptions, methods, and goals by team members, and gives some protection 

against analysts personal biases or "unreported discarding of  models that didn't work". The plan defines 

the path for the simulation project, and provides for pre-agreed criteria against which the simulation 

results will be assessed. This discipline is particularly useful for computer simulated trials, where the 

relatively low cost of additional runs can lead to unreported "tweaking" of assumptions and models, 

chasing results, and leading to self-deception.  

3.3 Overall Objectives and Specific Aims  

 

The explicit statement of overall objectives for the simulation project provides a basis for all decisions and 

actions related to the project. Objectives and specific aims should be clearly stated in the simulation plan 

and agreed upon by shareholders before the simulations are performed. The specific aims will determine  

the selection of models and methods, and  their implementation. For example, if a primary objective is to 

estimate what proportion of patients may be expected to experience a certain adverse event, then the 

sample size and methods proposed for the simulation will need to be sufficient to estimate that proportion 

to a desired precision.  

3.4 Assumptions 

 

Assumptions comprise essentially all components of the simulation model. Examples include structure of 

the models for pharmacokinetics (dose-concentration), pharmacodynamics (exposure-effect), clinical 
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effect, and covariate influences, their parameter values, and attendant variance structures. Further 

examples are assumptions about deviations from prescribed (clinical) protocol, which capture features 

such as non-compliance with treatment and study dropouts and how they may impact  the trial. The 

assumptions should be explicitly identified in the simulation plan. If some models are incomplete at the 

planning stage, that should be noted, with a plan for model completion and later plan revision.  Although 

not the most desirable situation, this is necessary in complex situations where a sequential approach to 

simulation is needed. 

It is important to acknowledge several levels of assumptions based upon level of underlying evidence or 

knowledge: 1) data & experiment based  2) educated or theoretically justified 3) necessary for the 

simulation but largely  conjectural and may be the focus of the simulation experiment. This holds for all 

sub-models that are described in more detail in Section 4. Premises of lesser certainty should be 

considered for inclusion as factors (see Section 3.4) to be varied in the simulations. Premises of greater 

certainty might remain unchanged throughout the simulation, possibly stipulated as "true" or at least 

widely accepted as so.  

3.5 Design of the Simulation Project 

 

Clinical trial simulation will often be approached as an experiment  (an "in silico" or “in numero” 

experiment), where factors are varied to determine their impact on outcomes. These factors include trial 

design properties (see Section 3.6.3), simulation models, and their parameters, (see Section 3.7). Factors 

may take on  specified values, or the value taken may be sampled randomly from a probability 

distribution. “Fractional" or "response surface" designs (Box et al. 1978) are often a good choice since 

they provide an efficient and well understood way to examine relationships between many factors and  

outcomes.These designs may be used to provide maximum reliability from the amount of resources 

devoted to the project, and allow for examination of individual and joint impact of numerous factors, rather 

than relying on relatively inefficient “one-factor-at-a-time” experimentation. 

 

The factors and their combinations should be identified  for the experimental design. Factor ranges and 

probability distributions should be specified.  Outcomes also need clear definition, usually at multiple 

levels, e.g., individual patient outcome, treatment group outcome, trial outcome. When the simulation is to 

represent a real trial, reference to the outcomes as defined in the real trial protocol is essential. If one 

purpose of the simulation is to help develop the real trial protocol, such as defining entry criteria, 

demographic characteristics, study variables of primary interest, times of observations, etc., then the 

possibilities under consideration are good candidates for  investigation as factors in the simulation project.  

Each simulated trial should be replicated sufficient times to meet project objectives (see Section 3.6.2).  

For example, far fewer replications will be needed to evaluate median behavior than to evaluate tail 
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behavior (e.g., distribution of values for small percentiles). Estimates for a suitable number of replications 

(i.e. the “sample size” for a given simulation "experiment") will often be approximate because of the 

complexity of the simulations, but can be estimated more precisely from initial simulated results. 

Simulation provides for systematic evaluation of the properties of alternative clinical trial designs. 

Consideration should be given to whether study costs should be incorporated and tracked during the 

simulation, as this could well vary with design, and might be the deciding factor in designs that similarly 

on other counts. 

3.6 Simulation Project Design  

 

3.6.1 Experimental Design  

 
The experimental design for a simulation, in many ways, is just like the experimental design for an actual 

experiment, with two primary differences: First, because of real resource limitations, some factors do not 

vary in the actual experiment (e.g., the number and type of subjects, Latin square vs. Greco-Latin 

square), whereas in a simulation experiment, such factors can be varied as part of the simulation project 

in order to investigate experimentally  the effect of design properties on results (see Section 3.6.3).  

Second, nature generates the responses (or “outputs”, or “outcomes”) in an actual experiment, whereas 

the computer, through implementation of a simulation model, generates the responses in a simulation 

experiment. 

The selection of the factors that the trial simulation team wishes to vary in an actual experiment, such as 

dose, is essentially the same task in simulation experiments and actual experiments.  However, the 

selection of factors and their levels describing models used in generating data is a task for the designer of 

simulation experiments that is accomplished by nature in actual experiments. For this reason, the design 

of a simulation experiment involves more factors than the design of the corresponding natural experiment. 

Factors in simulation experiments for generating responses correspond to models for at least three 

distinct aspects of nature: first, input-output models describing how the outcomes vary as a function of the 

background variables and treatment exposures (e.g., PK/PD models); second, covariate distribution 

models describing the background/baseline characteristics of the population from which the simulated 

trial subjects will be sampled (e.g., age, sex, race, blood pressure, cholesterol concentration); third, 

execution models describing how deviations from protocol, such as noncompliance and missing data due 

to non-response, transform the nominal design of a trial (as planned in the clinical trial protocol) into the 

actual design (as arising from the actual conduct of the trial). 

Sources of information for these three models are very different, but all are needed to realistically 

simulate how nature produces outcomes in an actual experiment. The IO model will rely on the usual set 

of pre-clinical and clinical scientific studies with the drug, and the body of literature (including published 
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models) on related compounds. The covariate distribution model primarily relies upon available 

population data bases. The execution model relies on information on actual behavior of individuals 

derived from experience with real world experiments. 

The number of possible designs may be overwhelming. Accordingly, efficient means of exploration must 

be employed, thus introducing the requirement for a “design” of the simulation project per se or what 

might be called a meta-design,  (which differs from the design of the clinical trial, which is the subject of 

the simulation project). In this situation, it is even more critical, than in an actual experiment, to capitalize 

on ideas from the statistical sub-field of experimental design with factorial experiments (Sacks et al. 

1989a, 1989b, Welch et al. 1992) . In particular, fractional replication may be relevant to defining the 

meta-design, because its purpose is to create efficient designs when the presence of (too) many factors 

to investigate prevents the use of a complete factorial design (i.e., all combinations of factor levels being 

studied). Response surface designs may also be employed in designing simulations aimed at finding a 

nearly optimal actual experimental design, especially when a sequence of simulation experiments can be 

contemplated.  

3.6.2 Replications 

 
The number of replications (i.e., the number of simulations of an individual trial). should be justified by the 

objectives and precision required of the simulation. An estimate may be derived via formal (statistical) 

calculations as well as pilot simulations. If the variable(s) of interest is (are) discrete, the number of 

simulations can be calculated from all possible combinations of outcomes using combinatorial algebra to 

estimate the number of replications and time required. Further, when the end-result of a Monte Carlo 

simulation is the calculation of some p-value or the percent of simulations rejecting some null hypothesis, 

which are binomially distributed, then the variance of that statistic can be estimated as p(1-p)/n, where n 

is the number of replications. This equation can be rearranged and some pilot simulation data can be 

incorporated to calculate a specified degree of precision in the estimate (normally distributed).  Further 

pilot simulations may lead to either expanded or reduced scope, as resources permit.  For continuous 

variables, standard power calculations for a desired level of precision can be done. It is important to be 

able to output the results of each replication to a file, such as an ASCII file, to permit further analysis of 

the full set of replications. 

 

3.6.3 Trial Design Properties 

 
The controllable variables of the trial design may be referred to as design properties. This term usefully 

distinguishes them from other simulation variables such as the parameters of the various sub-models 
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used for the simulation. Design properties can be broadly related to the subject population, the treatments 

and the observations.  

Population properties are used to select subjects from the population covariate model (see above); e.g., 

ranges of age, weight, renal function or the proportion of males and females. These properties are used 

to implement those design features usually described as inclusion and exclusion criteria in clinical trial 

protocols. 

Treatment properties reflect the number of subjects assigned to each treatment group and the nature of 

the treatment for each group such as the dose size, formulation and dosing frequency. The kind of 

treatment assignment, e.g., parallel group, cross-over, forced titration, or dose-escalation, is also a 

treatment property that is often the most crucial feature of the overall design.  The method of assignment 

is another treatment property, but this is almost always method of randomization. 

Observation properties specify the type of responses (biomarker, surrogate or clinical endpoint) to be 

measured and the number and timing of each observations. 

The selection of a set of trial design properties uniquely identifies a particular design. One replication of a 

particular design yields, after statistical analysis of raw trial results, a summary statistics (perhaps simply 

the p-value of a test of the null hypothesis). The performance of the design is sometimes judged in terms 

of the cumulative distribution of such a statistic, e.g., the probability of rejecting the null hypothesis under 

the alternative hypothesis; i.e., power. To find a good design (or, even more difficult, a robust design) the 

selected designs must be evaluated (see Section  3.6.1). 

 

3.7 Models for Simulation 

 
Constrained by the parsimony principle, the type of models employed may have both empirical and 

mechanistic elements. Sub-models should be identified, with appropriate literature references when such 

exist. The models will typically have both fixed and random components. Multivariate distributions should 

be used when possible rather than independent univariate distributions, e.g. age and renal function, 

especially for characteristics in the targeted population that are highly correlated.  

The simulation team  must consider which models for dose-response or concentration-response (efficacy 

and safety), compliance, dropout, etc. would enable a realistic simulation. A "full blown" system model 

may not be needed to meet simulation objectives. Here, again, the parsimony principle should be 

considered so that over-complex models are not used.  

Most modelers of biological phenomena are familiar with so called “Input-Output” (or “IO”) models, i.e. 

models that predict responses (or “outputs”, or “outcomes”) given certain inputs and baseline covariate 

values. In PK/PD, the outputs are drug concentrations and effects; the inputs are rates of drug input over 

time, and the baseline covariates are such things as species of animal, age, gender, values of laboratory 
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tests, etc. When the IO relationship involves stochastic elements (e.g. between and within subject 

variability and measurement error), a complete model must also describe the probability distribution of 

outputs given inputs. It is customary  to think of the expected (mean) output of the IO relationship when 

the word “model” is employed. In the context of this document, when we use the unmodified term “input-

output model,” we refer to a full probability model; that is, a model for the entire probability density 

function for the outputs as a function of the inputs (or probability mass function for discrete outputs). 

Critical parameters that describe these models will be among the factors to be explored in the simulation 

project. 

The sub-models required to simulate clinical trials include an IO model (see Section 3.7.1) and two 

additional models (covariate distribution model (Section 3.7.2) and execution model (Section 3.7.3)), 

which are often unfamiliar to modelers involved primarily with data analysis. A clinical trial can be thought 

of as a series of steps, each involving, for simulation purposes, a sub-model from which the outputs 

particular to that step must be generated. Those steps are 1) creation of a study population, 2) selection 

of study design, 3) trial conduct, and 4) analysis of trial results. Those steps are explained in more detail 

in the following paragraphs. 

First, a study population is created. Simulated subjects must be drawn from a probability model for 

baseline covariates describing that of the intended (real) subject population. The probability model of 

population characteristics should include those characteristics that are known or suspected to be of 

relevance (age, race, weight, disease state, etc.). Anything described by entry criteria in the actual trial 

protocol falls into this category, as these are needed for determination whether these subjects are 

allowed into the simulated trial or not. 

 

Once a probability model describing the population of subjects has been chosen, a nominal study design 

is selected (see Trial Design Properties (Section 3.6.3)), which fixes the value of the controllable design 

properties. The nominal design does not arise from a model, as, in general, it has no stochastic elements: 

it is determined by the choice of the study design team as to the settings of the design properties. (Note, 

however, that so-called “adaptive” designs, ones that change depending on observed outcomes, indeed 

do have stochastic elements, and therefore require a model in the sense of the word used here). It is 

often the primary purpose of a simulation study to inform the trial designers’ (and also the experimenters’) 

judgment in making those choices. 

The next step is the trial execution. The Execution model will use the nominal design to simulate an as 

executed design which reflects events such as compliance variation and subject drop-outs.  Given the as 

executed design (note, not the nominal design) and baseline covariates, the Input-Output Models for the 

outcomes provides the results of the simulated instance of the clinical trial. The IO model outputs are then 

analyzed according to the method specified for analysis of the nominal design for the individual simulated 

trial (this step just reflects the current practice of statistical analysis). This analysis is the one that is made 
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explicit in the Analyses section of the simulation plan (see section 3.9). The model for the transformation 

of the executed design to outcomes is the familiar IO model, often one linking drug dosage to clinical 

outcomes via a series of PK and PD sub-models. Application of this IO model to the process of clinical 

trial simulation differs from the application of such a model to data analysis in several ways. 

For simulation purposes, the IO model will differ even from population models as currently used for 

analysis of actual trials, in the attention that must be paid to reflect faithfully the variability in the data. As 

stated elsewhere (section 3.9), models for simulation are more complex than for analysis. Population 

models are traditionally used to draw conclusions from already-completed trials about the sub-model for 

the expected value of individual IO model parameters as a function of covariates. For those purposes, 

while inference demands that the within-individual correlation of measurements be recognized, in general, 

the sensitivity of estimates to the accuracy of the sub-models for variability is not great. In contrast, a 

simulation project will often seek to estimate also  the sensitivity of trial design performance with respect 

to tail probabilities of events, such as the distribution of responses at a given time after therapy begins, 

and so the joint-probability models giving rise to such events must, accordingly, be well represented. 

 

3.7.1 Input-Output Models 

 

IO models may be broadly divided into mechanistic and empirical models. Mechanistic models attempt to 

reflect, at a structural level, the actual physical/biological system giving rise to the data, whereas empirical 

models simply describe the shape of the IO relationship. For simulation studies, mechanistic models are 

encouraged.  Such models are  expected to extrapolate to new situations better than empirical models, 

and exploring the study design properties in a simulation project inevitably requires extrapolation beyond 

current data. Attention should be paid to exploring responses which may arise from abrupt withdrawal of 

drug or brief drug holidays. Such phenomena may however be difficult to simulate because of the relative 

paucity of plausible models. 

 

3.7.2 Covariate Distribution Models 

 

At a first level, covariate models define the distribution of covariates in the population to be studied in the 

trial.  The relevance of these is that IO models used for simulation studies must deal with the variability 

from individual to individual, and within individuals over time.  Models that can do this must account for a 

rich and complex co-variation between observations within individuals.  For mechanistic models, such 

complex modeling of co-variation is best done using so-called hierarchical random effects models, which 

view the parameters of the individual-level IO models as themselves random, with distributions governed 
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by baseline covariates (hence the need for the covariate model) and, perhaps, certain outcomes 

(including measurements of the same covariates observed at baseline).  In a sense, an IO model with this 

feature is also a model of the population: it accounts for the distribution in the population of parameters 

governing the individual IO models, often as a function of baseline covariates.  Such models have 

become familiar to PK/PD researchers as so-called “population models”, and to Bayesian statistical data 

analysts as “hierarchical models”.  

 

3.7.3 Execution Models 

 

During execution of the real clinical experiment, deviations from the trial protocol will inevitably occur. To 

simulate a clinical trial with proper accounting for such perturbations, a model of deviations from per-

protocol behavior must be put forward. These will consist of individuals who refuse to enter the study or 

are inappropriately included or excluded (initiation deviations), those who do not comply fully with 

instructions (they miss doses, clinic visits, etc; so-called compliance deviations), and individuals who drop 

out of the study prematurely (termination deviations) (Urquhart 1999) . Deviations may also be 

attributable to investigator behavior such as failing to obtain an observation or not recording the time of 

the observation accurately (observation deviations). Such models are often unfamiliar to modelers, 

primarily because laboratory scientists usually deal with experiments in which deviations are minor or 

absent, whereas those who analyze clinical trials, usually use the standard approach to such analysis 

(i.e., “intention to treat”), which ignores such deviations. To simulate a clinical trial realistically, however, 

the data must be generated from a realistic simulation model, no matter what method of analysis is 

applied. The inputs to a model for deviations from protocol are the nominal design, baseline covariates, 

and outcomes. Of course, account must be taken that only those outcomes that have occurred before the 

time of a given protocol event (that may or may not be executed properly), can influence the resulting 

event. 

 

3.7.4 Source of Models 

 
Ideally, the models needed to perform simulation studies of the next series of actual clinical trials to be 

undertaken are developed during the course of prior investigation with the drug. Thus models for phase 2 

drug development trials should be developed in phase 1, for phase 3 in phase 2, etc.  This flow of 

development means that one criterion for a trial design, arguably the most important at any phase, is the 

ability of that design to reveal the models ( required to simulate the next stage) with sufficient accuracy 

and precision for reliable decision-making. Of course such models will inevitably remain uncertain; the 

effect of this uncertainty on design performance is the subject of sensitivity analyses: one seeks “robust” 
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designs; that is, those that will perform well under a variety of premises, as translated into the simulation 

via model uncertainty. Although information from previous development phases may serve well to 

express the drug-specific IO models, it will not, in general, be adequate to provide information on the 

covariate distribution model or the execution model for deviations from the clinical trial protocol.  

Covariate models will be largely empirical, not mechanistic, and should be constructed and estimated 

from existing databases of covariate values in populations of interest.  A problem with this approach is not 

only the availability of data bases for public use, but the incompleteness of any particular data base: not 

all covariates of interest are measured in every study.  Modern methods of data imputation, adjusted so 

as to allow correction for the degree of imputation in subsequent inference are available, and may find 

application here (Rubin 1996). Such databases need not, of course, come solely from therapeutic studies: 

data bases from health care systems, for example, should be quite useful here (e.g., National Health and 

Nutrition Examination Survey). 

Models for deviation from clinical trial protocol will be more difficult to specify with any precision, and such 

models will therefore represent a continuing source of uncertainty in simulation studies, again a matter to 

be assessed via the sensitivity analyses that are a central part of such studies.  Some data on which to 

base such empirical models (mechanistic models are unlikely here) may come from pooling experience, 

across clinical trials, of non-consent, non-compliance, and dropout rates as a function of baseline 

covariates, and, for example, diverse reactions (outcomes).  Some recent work defining models for 

compliance patterns may ultimately provide good models for simulation studies (Girard et al. 1998). 

3.8 Computational Methods 

 
The simulation plan should include descriptions of the hardware and software used for development of 

the models, execution of the simulation, and the programs for analysis of the simulated trial associated 

with each replication. Generally one should supply more details for "home grown" software than for well 

accepted and widely available (commercially-available and validated) software. Some special issues 

related to simulation are of particular note. 

 

3.8.1 Random Number Generation 

 
The backbone of Monte Carlo simulation is the ability to generate random numbers.  It is critical that 

random number generation results in sufficiently "random" numbers. Random numbers can be either 'true' 

random numbers, which are based on actual computer hardware that usually either amplify resistor or 

semi-conductor diode noise, or 'pseudo-random' which are produced by a computer program.  Most, if not 

all, statistical packages and languages incorporate pseudo-random number generators (RNGs), which 

use an algorithm to generate numbers that behave like 'true' random numbers sampled from a uniform 
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distribution.  The random number generator used in any simulation project should be known to have been 

validated using appropriate means.  

Repetition of random number sequences or other patterns may result in simulations that do not 

adequately represent the stochastic nature of individuals within a population (and events within the trial). 

Pseudo-RNGs have the disadvantage in that they are cyclical and repeat given enough calls to them.  

The period of a RNG is the number of calls which can be made to the RNG before the sequence repeats 

itself.  The RNG used in a simulation should have a period at least an order of magnitude larger than the 

square of the number of calls to the RNG because as n, the number of function calls, approaches p true 

randomness decreases (Ripley 1987, L'Ecuyer 1998).  Thus, RNG using a modulus near 2**31 may not 

have sufficient "randomness" for clinical trial simulation. 

3.8.2 Simulation of Probability Densities 

 

Once uniformly distributed random variates are generated, their values must be transformed to the 

appropriate probability distribution.  At the very least, general simulation software packages should 

include the normal, log-normal, beta, and Poisson distributions with the ability to create mixture 

distributions from continuous variables and to truncate either discrete or continuous variables. Generation 

of appropriate multivariate distributions is also important. 

3.8.3 Differential Equation Solvers 

 
For description of (deterministic) time-dependent phenomena, most software makers use differential 

equations as their basis to have as general a program as possible, even though it is not necessary to use 

differential equations for all simulations. Using differential equations for IO models makes the code that 

implements a given (sub-)model more readable, but requires heavy computations for calculation of 

outputs. Linear systems may have explicit solutions, which may then be modified using linear operators to 

solve the problem at hand, e.g., using a one-compartment model and the superposition principle to 

generate a multiple dose concentration-time profile.  The primary advantage of analytical equations is 

speed.  Differential equation solvers are slower than an explicit equation solver.  If the dynamic system is 

nonlinear (and this non-linearity bears relevance to the simulation project) Then a differential equation 

solver generally must be used with, as a consequence, a tremendous increase in computational 

requirements.  

The choice of the differential equation solver depends on the problem at hand.  If the integration interval 

is large enough, as it is with most simulations, then adequate accuracy may be obtained using Runge-

Kutta or Adams methods with 4th order adaptation. If the ratio of the largest to smallest rate constant is 

large (e.g. in pharmacokinetic compartmental modeling), or if there are slowly and rapidly varying 

components within the system, this stiff system requires very specific algorithms for their solution, such as 
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Gear's algorithm or the Livermore Solver of ODEs. Since clinical trial simulation explicitly studies the 

effect of variability (e.g. in PK and PD), “extreme” subjects and/or parameter values are likely to occur, so 

that robust integration methods will be often preferred. In any case, it is recommended to perform a 

preliminary check whether the ODE solver is adequate for the envisaged simulation(s). ). In some cases a 

suitable approximation could greatly decrease the computational burden, and might be used if there is 

little loss from its use (i.e., some evaluation of impact is needed) 

3.8.4 Computer Requirements 

A fast CPU (actually “as fast as possible”) may be needed in order to perform the simulation project in a 

reasonable period of time, compatible with the drug development timelines. Monte Carlo simulation 

studies typically require large amounts of memory and storage capacity. A few trial simulations, each 

based on a thousand replications,  can easily add up to hundred's of MB of disk storage.  Adequate RAM 

(64 MB or greater) is typically needed to be able to manipulate data sets of this size. Application of the 

parsimony principle can help to avoid overwhelming available resources. The simulation plan should 

specify the list of those responses of the simulated study that will be stored in the simulation database. 

 

3.9 Analyses  

 
There are two levels of analysis. The first one operates at the level of the replication. It will describe how 

each individual simulated trial is to be analyzed. The second one describes how the group of simulations 

in the database of the simulation experiment is to be analyzed as a whole (a form of meta-analysis). 

The same statistical analysis planned for the actual clinical trial should be used to analyze each replicate 

of an individual simulated trial. The replications of the simulated trial provide a distribution of study 

outcome statistics, providing insight into a probable distribution of outcomes for the actual clinical trial. At 

the replication level of the simulated trial, the method of statistical analysis may vary with changing study 

design. This should be described in the simulation plan when different study designs are investigated 

within a simulation project. Alternative statistical analyses allow comparison of the methods of analysis 

under the conditions of the simulated trials. The model used to simulate data will usually be more 

complex than the model proposed for the planned analysis of the actual trial. This allows evaluation of the 

importance of potential model misspecification in the planned analysis. 

The appropriateness of statistical analytical methods for the analysis of individual simulated trials and for 

the meta-analysis of a group of clinical trial replications (see section 4.3.2) should be considered in the 

planning phase. 

3.10 Critical Assessment of Simulation Results 
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The plan should address how the simulation results will be compared against actual trial outcomes and 

trial implementation. Simulation performance criteria may be very simple, such as cursory review of 

median & range versus anticipated values, or could be complex, such as evaluating distributional 

properties of simulated parameters and the types of protocol derivation that occur. Procedures to build 

confidence that a simulation has been properly implemented (models, distributions, sampling, etc.) should 

be planned as part of the simulation project. 

 

3.11 Reporting  

 
The plan should describe the reporting to occur following the simulations and analyses. Mockups of key 

tables or figures are helpful in making sure that key project objectives are well addressed.  

 

4 EXECUTION OF THE SIMULATION PROJECT 

 

4.1 Model Building 

 

Clearly, a simulation project can be no better than the quality of the models it uses.  Hence, considerable 

attention to the models (of all 3 types) is warranted, and the parsimony principle should be applied, for 

both the objectives of the project and the associated models. There is considerable experience with, and 

folklore about, model-building, but little published literature on good practices or standards.  Model-

building as currently practiced is an essentially inductive and hypothesis-generating activity, and has not 

been considered  amenable to algorithmic definition. Certain practices, such as consulting subject-matter 

experts, are an obvious “must” at the project planning level. Such expertise should be, to some degree, 

already present within the trial design team.  

In contrast to model-building for data analysis only, it is essential to undertake considerable model-

checking before accepting a model for a simulation study, and the requirements for model performance 

do differ, as discussed above, from data analysis to simulation.  Accordingly the next section discusses 

some principles of model checking or validation. . 

 

4.2 Model Checking and Validation 
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Model evaluation must take into consideration the intended use of the model. At the very least, one must 

be able to describe anticipated future observations from the model, i.e. similar data observed under 

similar conditions.  But models are most useful when they can be used for prediction of different data 

and/or under different conditions. Model evaluation should not focus on whether it is the "correct" model, 

but should ultimately address the predictive performance of the model.  Such evaluation requires more 

than the usual goodness-of-fit criteria such as inspection of distributions of residual and weighted 

residuals and examination of standard errors of the estimates and correlations among parameter 

estimates.  Such standard tools are insufficient to evaluate all the variance-covariance components of 

models involving random effects and provide little if any information about model performance when used 

for prediction. 

Model evaluation can be divided into three parts, 1) empirical evaluation, 2) mechanistic evaluation, and 

3) predictive performance.  Not all parts may be relevant to a specific application.  Empirical evaluation 

involves the question, is the model consistent with the observed data?  The standard goodness-of-fit 

criteria partially address this question. Procedures to estimate prediction error based on the original data 

set may involve external validation, which involves splitting the data into learning and validation data sets 

and predicting the validation data from the model or, cross-validation, which is essentially repeated data 

splitting. 

Bruno et al. (1996) demonstrated the external validation approach by prediction of parameters of interest 

for the validation dataset using the chosen model, followed by comparison of these predictions to a naive 

model (no covariates).  Empirical Bayesian estimation is used to obtain the "observed" parameter 

estimates for the validation dataset.  This approach is very useful for assessing the importance of 

covariates. If a model is an adequate representation of the data, it should be possible to use the model to 

simulate parameters and pseudo-data that are generally consistent with any prior knowledge of 

parameters and the observed data.   

Since the use of PK/PD models for clinical trial simulation, in most cases, will require extrapolation, 

mechanistic evaluation may be particularly important.  The model should be consistent with the 

underlying physiological, pharmacological and pathophysiological processes and quantities.  Sensitivity 

analyses can be used to assess the impact of misspecified parameters and other model components and 

assumptions, and thereby provide some, perhaps crude, estimate of the precision of the simulation-based 

predictions.  Considerable effort may be needed to build physiologically consistent models without making 

them unnecessarily complex.  This effort must be done in consultation with the clinical experts who are 

most knowledgeable about clinical trial outcomes for a particular therapeutic intervention.  This 

consultation may be of greatest importance when pharmacodynamic information from early trials is used 

to predict the actual clinical responses observed in a phase 3 efficacy/safety trial. 

The ultimate test for a model is the assessment of predictive performance when the model is used to 

predict data from a different study or trial.  This test should be employed whenever the model will be used 
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to extrapolate from the original study conditions and appropriate independent data are available.  The 

type of data and the conditions under which it is collected should be as similar as possible to the planned 

use of the model.   

Evaluation of predictive performance can be carried out at either the parameter or the observed data 

level. Proposed model predictions should be checked against existing data, paying particular attention to 

lack of fit or bias (lateral validation). Evaluation of range of validity is encouraged, as many models may 

be useful over a limited range but become less useful outside that range.  "Spot checking" of simulated 

data against assumptions can help ensure correct implementation of data generation routines. Since 

model imperfections may lead to inaccurate or misleading simulations via propagation of errors, models 

to be used in simulation should be checked to assure that they are capable of generating datasets that 

reflect the datasets from which they are derived.  The posterior predictive check (Gelman et al. 1995, 

1996) for evaluating predictive performance involves Monte Carlo simulations of the original trial from 

which the models were derived, using the posterior distribution of population PK parameters estimated 

from the original trial data (or a reasonable approximation to it). The probability of any statistic derived 

from the original data under the fitted model can be determined from the distribution of that statistic 

derived from the replications of simulated trials, and provides evidence for model misfit if the probability is 

low. Examples of predicted characteristics might be trough concentrations at steady-state and the peak to 

trough concentration difference for multiple-dose pharmacokinetic data or the change in response 

between first and last dose for a pharmacodynamic model describing tolerance. In the context of mixed 

effect modeling, the posterior predictive check may have the ability to detect model misspecification in the 

variance-covariance model for random effects (Kowalski 1999). This is of particular importance for models 

used to simulate clinical trials. Inferences based on these simulations may be more sensitive to 

distributional assumptions. This will be especially true if the inferences are influenced by extreme 

observations. 

 

For overall checking of simulation results, using graphical display is generally helpful. Visual display 

allows comparison of selected outcomes with prior results and a (partial) check that expectations 

regarding the mimicking of reality have been met 

 

4.3 Analyses 

 

4.3.1 Replication Analysis 

 
The analyses planned for the actual clinical trial should always be done on the simulated data from each 

of the individual simulated trial replication.  It may also be useful to look at alternate analyses, metrics, 



 19 

variance-covariance structures, etc. to evaluate simulation strengths and weaknesses under each 

approach. Based on the raw data from the replications associated with a given trial design, one can 

generate summary values descriptive of the corresponding design, for use in analyzing the simulation 

project as a whole. 

There may be several key statistics of interest resulting from each individual simulated trial.  They might 

include the primary trial statistic, the primary outcome, various estimated parameters, a goodness-of-fit 

statistic, or any other statistics of interest , various estimated parameters, a goodness-of-fit statistic, or 

any other statistics of interest (e.g., such as proportion of patients responding to treatment, p-value for 

primary comparison, number of dropouts, or estimate of a pharmacokinetic parameter). 

 

4.3.2  Simulation Experiment Analysis 

 
Analysis at the level of the simulation project  provides integrative and comparative insights into the group 

of simulations that were performed.  Some measures of interest for exploration might include sensitivity, 

power, bias,  precision, robustness, data dependence on models and design, conclusion dependence on 

analysis technique surrogate evaluation (e.g., agreement of surrogate with outcome), etc.   

A histogram showing the distribution of a key summary statistics of interest is expected (e.g. the actual 

trial primary outcome variable).  In addition to simple histograms, common descriptive measures of 

distribution (for quantitative variables) will often be useful, such as mean, median, mode, standard 

deviation, range, inter-quartile range, quartiles, minimum, maximum, percentiles, etc.  Percent success is 

one appropriate measure for a pass/fail variable. 

Some suggested graphic displays for consideration include: histograms (possibly smoothed), percentile 

summary plots, profile plots (overlaid curves), concordance plots (comparing methods, designs, etc.), 

scatter, contour, box-whisker, distribution diagnostic (e.g., normal plots), and possibly multi-panel of any 

of these types.  One particularly interesting way to present premise and design/analysis joint impact is in 

a tabular array, with premises listed in rows and design/analysis possibilities listed in columns, with each 

cell providing summary information (or, even better, displaying a graphic) representing what happens at 

that combination. 

Statistical analysis of the group of simulated trials from the data in the simulation database should be in 

accordance with the design of the simulation project, often using statistical methods appropriate for 

factorial or response surface designs. Competent statistical expertise (which will generally be present in 

the trial design team) is required here. The approach generally may also depend on the objectives, such 

as maximization of power, maximization of sensitivity, or minimization of cost.  Each primary parameter 

estimated should include an estimate of its uncertainty. Diagnostic procedures, such as residual plots, 

should be also considered. 
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4.4 Report Contents 

 
Guided by the principle of clarity and completeness, all methods and results of the simulated trials, 

including statistical analysis, should be interpreted and summarized as a whole in a report describing the 

results of the simulation project. The report should also include a statement as to whether and how the 

actual simulation differed from the planned simulation as stated in the simulation plan. This report should 

be at a level of detail sufficient to be thorough, but also to be understandable by all intended readers. This 

report provides a single location for decision making about the clinical trial design by incorporating all 

aspects in one coherent package for communication and evaluation 

 

5 CRITICAL ASSESSMENT OF SIMULATION 

 

Clinical trial simulation is a new and evolving tool for aiding drug development. Critical evaluation of this 

approach is needed to assess its value, in parallel to the increasing development and dissemination of 

the technology.  

 

5.1 Prospective Evaluation 

 
To the extent that simulation of already completed trials may be used to guide the development of this 

field and to expand practitioner experience, it is essential that these simulations be carried out in a 

completely “blinded” manner, without reference to the actual results of the completed trials.  Only after 

evaluation of the performance of the simulation relative to the actual clinical trial outcome, should the 

clinical trial data be "mined" for information about why the simulations may or may not have been a 

reasonable representation of the actual trial being considered. 

 

5.2 Retrospective Evaluation 

 
The actual prediction of future trials based on simulations is, of course, self-blinding because those 

responsible for the simulation cannot know the outcome of the future trial.  It is important, though, to 

capture information about simulation performance and the reasons for general "success" or "failure", once 

the actual trial is completed.  At best, clinical trial simulation can provide an intelligent estimate of the 

range or distribution of likely outcomes based on available data.  The outcome of a given real trial 
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represents only one realization of the trial and as such may or may not fall in the range of typical or usual 

outcomes.  Also, it may happen that a trial simulation based on an imperfect model may still have 

provided the right answer regarding the choice of clinical trial design.  

 

5.3 Cumulative Evaluation 

 

Any hope of assessing the overall value of clinical trial simulation will come from cumulative experience.  

Accumulation of data on protocol execution deviations and on other aspects of clinical trials (e.g., across 

center differences, geographical differences in placebo effects, etc.) and their integration into models for 

inclusion in clinical trial simulation are among many future challenges to be met in order to construct 

simulated trials that better represent the actual trial experience. Therefore, it is vitally important to 

maintain an ongoing compilation of experiences and "lessons learned" in clinical trial simulation from all 

sources. 
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