Randomization and Mixture Approaches to Model Building

Nick Holford Dept Pharmacology & Clinical Pharmacology University of Auckland, New Zealand

Learn and Confirm Cycle

Original idea from GE Box (1966)

Translated to Drug Development

Sheiner LB. Learning versus confirming in clinical drug development. *Clinical Pharmacology & Therapeutics* 1997;61(3):275-91

Confirming or Learning?

- Confirming tests the Yes/No Hypothesis
- If the question being asked has a Yes/No answer then it is a Confirming question
- If the question has a How Much answer then it is a Learning question

Confirming or Learning?

Confirming

- Making sure
- Outcome Expected
- Analysis Assumptions Minimized E.g. Randomized Treatment Assignment
- Questions for Drug Approval E.g.
 - Does the drug work?
 - Can it be used safely in renal failure?

Power

Learning

- Exploration
- Outcome Unexpected
- Assumption rich analysis
 –E.g. PKPD model
- Questions for Drug Science -E.g.
 - How big an effect does the drug have?
 - What is the clearance in renal failure?

Bias & Imprecision

The Confirming Question

 The most common Clinical Trial Simulation question:

» "Can the Null Hypothesis be rejected?"

- Frequentist Hypothesis testing requires
 - » specification of rejection level
 - Alpha e.g. 0.05 [Type I Error criterion]
 - » calculation of a test statistic

– E.g. likelihood ratio

- » prediction of P associated with test statistic
- How can P be predicted?

The Randomization Test

©NHG Holford, 2005, all rights reserved.

What is the True P Value?

- A critical issue for population model based analysis
- Assumption that NONMEM OBJ Function Difference is Chi-square distributed may be dubious for confirming trial decisions
- The OBJ Function difference is the Likelihood Ratio Test statistic
- Randomization Test uses computational power to *estimate* the true P value for a given data set and analysis method

Randomization Test

- Idea is to create a data set that would be expected if the Null Hypothesis was true
- Simplest case uses a binary covariate e.g. treatment assignment
- The original data has actual treatment assignment and outcome
- New data set is identical except for rerandomization of covariate so that the Null Hypothesis will be true (under randomization)

Randomization Test

There are (at least) 3 methods that can be considered for the randomisation of a covariate:

- 1. Sample from a parametric distribution for the covariate ('simulation')
- 2. Sample with re-sampling from the covariate empirical distribution (like bootstrap)
- 3. Sample by permutation of the covariate empirical distribution (no resampling)

RT Assignment Methods

Parametric Simulation

if (uran >= 0.5)
 rancov=1
else
 rancov=0

Empirical ReSampling

isub=int(nsub*uran)+1
rancov=COV[isub]

Empirical Permutation

```
if (nsub>1) {
    isub=int(nsub*uran)+1
    rancov=COV[isub]
    # remove COV[isub]
    for (i=isub; i<nsub; i++)
        COV[i]=COV[i+1]
    nsub--
} else
    rancov=COV[1]</pre>
```

Theophylline and Sex

 Randomized concentration controlled trial of theophylline

Holford NHG, Black P, Couch R, Kennedy J, Briant R. Theophylline target concentration in severe airways obstruction - 10 or 20 mg/L? *Clinical Pharmacokinetics* 1993;25(6):495-505

- Simple Pharmacodynamic Model
- Does Sex affect Theophylline Emax?

Model for Sex

```
$PRED
   if (sex.eq.0) then ; female
      fsxemx=THETA(4)
   else
      fsxemx=1
   endif
   E0=
            THETA(1) * EXP(ETA(1))
   EMAX=fsxemx*THETA(2)*EXP(ETA(2))
   EC50 = THETA(3) * EXP(ETA(3))
   Y = EO + EMAX*THEO/(THEO+EC5O) + ERR(1)
```

Sex Change

Original

#	ID	TIME	THEO	AGE	WT	SEX	RACE	DIAG	PEFR
	1	0.01	1	27	57	0	1	1	200
	1	1.51	20.7	27	57	0	1	1	300
	2	0.01	0.1	21	76	0	1	1	110
	2	1.42	25.5	21	76	0	1	1	200
	2	4.42	26.2	21	76	0	1	1	325
	3	0.01	0.1	26	67.5	1	1	1	150
	3	1.01	11.7	26	67.5	1	1	1	400
	3	3.76	7	26	67.5	1	1	1	420

Permuted

#	ID		TIME	THEO	AGE	WT	SEX	RACE	DIAG	PEFR
		1	0.01	1	27	57	0	1	1	200
		1	1.51	20.7	27	57	0	1	1	300
		2	0.01	0.1	21	76	1	1	1	110
		2	1.42	25.5	21	76	1	1	1	200
		2	4.42	26.2	21	76	1	1	1	325
		3	0.01	0.1	26	67.5	0	1	1	150
		3	1.01	11.7	26	67.5	0	1	1	400
		3	3.76	7	26	67.5	0	1	1	420

NONMEM and RT

- Run Null and Alternate Models with Original Data
- Compute Original Data delta OBJ dOBJorg=original null OBJ minus original alternate OBJ
- Run Alternate Model with many (1000+) randomized data sets
- Compute Randomized Data delta OBJ dOBJ= original null OBJ minus randomized data set OBJ
- Sort on dOBJ and find quantile corresponding to dOBJorg

WFN nmrt

- Any model/data
 - » Care with paths for user defined \$SUB
- WFN command:

nmrt SEX theopdsex 1 1000

- SEX is an example of the covariate that will be permuted to generate null data sets
- Results in theopd.rt_SEX directory in theopd.txt

Null Distribution (FOCE)

True P and Critical DOBJ Values

Rep	Dobj	Obj	P Chisq	P Quant	Quant/ChisQ	Decision
890	5.625	5795.706	0.017706	0.023139	1.306831	
170	5.608	5795.723	0.017879	0.024145	1.350485	Reject
464	5.568	5795.763	0.018292	0.025151	1.374994	
112	4.163	5797.168	0.041316	0.049296	1.193135	
894	4.161	5797.17	0.041365	0.050302	1.216048	
25	4.146	5797.185	0.041733	0.051308	1.229431	
864	3.911	5797.42	0.047971	0.055332	1.153445	
265	3.828	5797.503	0.050403	0.056338	1.11775	
545	3.777	5797.554	0.051962	0.057344	1.103582	

Original Data dOBJorg FOCE = 5.608

Theophylline Emax and Sex

http://wfn.sourceforge.net/wfnrt.htm

Theophylline Emax and Sex

Estimation Method	Randomization Method	Successful Runs %			
			χ2 Ρ	Quantile P	DOBJ(0.05,1)
FOCE ¹	Parametric	99.7	0.018	0.028	4.506
5.608	Non-Parm	99.7	0.018	0.033	4.570
	Permutation	99.4	0.018	0.024	4.163
FO ¹	Parametric	99.7	0.051	0.073	4.407
3.816	Non-Parm	99.7	0.051	0.080	4.741
	Permutation	99.5	0.051	0.065	4.115

- DOBJ FOCE $\chi 2$ P closer to true P value?
- Method Permutation closer to $\chi 2 P$?

1=Compaq Visual Fortran 6.6 Update A

Randomization Test of SEX and WT

Covariate	Parameter	Obj ¹	dOBJ	Randomization Test Probability ³	PPV ² Emax
None	-	5801.3	5 500	0.024	0.27
Sex	Emax	5795.7	5.599	0.024	0.22
Weight ⁴	Emax,E0	5813.5	0.225	0.625	0.43
Sex Weight ⁴	Emax Emax, E0	5813.3	0.235	0.635	0.43

1=NONMEM V 1.1 FOCE 2=Population Parameter Variability (sqrt(ω^2))

3=Compaq Visual Fortran 6.6 Update C 4=Allometric model on Emax and E0

Likelihood Ratio Test Results

- Seems to be a smaller Emax in women
 Against biological expectation (no effect)
- Adding weight worsens objective function and PPV suggesting no effect of weight on PEFR
 Against biological expectation (increase with size)

Mixed up about Sex? Is there another Way?

- A Bayesian approach is to estimate the probability of one model being favoured over another model
- NONMEM can use a mixture model to estimate this probability

Thanks to Steve Duffull for suggesting this approach

Mixture on Models

\$PRED

IF (MIXNUM.EQ.1) THEN ; sex effect model IF (SEX.NE.1) THEN FSXM=THETA(4) ;female ELSE FSXM=1 ;male ENDIF ELSE FSXM=1 ; no effect of sex ENDIF E0 = THETA(1) * EXP(ETA(1))EMAX=FSXM*THETA(2)*EXP(ETA(2)) EC50=THETA(30*EXP(ETA(3)) =E0 + EMAX*THEO/(THEO+EC50) + EPS(1)Y \$MIX NSPOP=2P(1)=THETA(5) ; Prob of sex effect model P(2)=1-THETA(5); Prob of no sex effect

Mixture Model Method

- Specify both models in the same problem
- Estimate the mixture probability for each model
- Bootstrap the mixture model
- Examine distribution of mixture probability

Step 1: Probability of Weight on Emax and E0 1000 Permutations/Bootstraps

Step 2: Probability of Sex on Emax With and Without Weight on Emax and E0 1000 Permutations/Bootstraps

Fractional Change of Emax in Females 1000 Bootstraps

	Weight on Emax and E0	Without Weight
Average	0.96	0.78
95% ČI	0.72 – 1.24	0.06-1.01

Mixture Probability Results

- Distribution when weight is included is very different from the null when any weight effect has been removed by permutation
- No support for a sex effect
 Confirms biological expectation
- Suggests a weight effect on Emax and E0
 Confirms biological expectation

Statistics

• "Significance"

» Count of Mixture Prob > 0.5

• "Weight of Evidence"

- » Average of Mixture Probability
- Odds
 - » For = Weight/(1-Weight)
 - » Against=(1-Weight)/Weight

Mixture Model Odds SEX and WT

	Mixture P Significance	Mixture P Weight	Odds For	Odds Against
No Weight	0.86	0.83	4.75	0.21
Weight on Emax	0.73	0.73	2.73	0.37
Weight on Emax and E0	0.45	0.52	1.07	0.93

Conclusion

- Females appear to have a smaller theophylline Emax for PEFR
- This difference is no longer supported when body size is used to explain between subject differences in Emax and baseline PEFR
- Mixture models are an alternative to the randomization test for model building