Randomization and Mixture
Approaches to
Model Building

Nick Holford
Dept Pharmacology & Clinical Pharmacology
University of Auckland, New Zealand



Learn and Confirm Cycle

e Original idea from GE Box (1966)

e Translated to Drug Development

Sheiner LB. Learning versus confirming in
clinical drug development. Clinical
Pharmacology & Therapeutics
1997;61(3):275-91



Confirming or Learning?

e Confirming tests the Yes/No Hypothesis

e If the question being asked has a
Yes/No answer then it is a Confirming
guestion

e If the question has a How Much answer
then it Is a Learning question



Confirming or Learning?

Confirming Learning
. Making sure o Exploration
« Outcome Expected » Qutcome Unexpected
« Analysis Assumptions Minimized * Assumption rich analysis
E.g. Randomized Treatment Assignment  —E.g. PKPD model
* Questions for Drug Approval » Questions for Drug Science
—E.Q. -E.g.
* Does the drug work? « How big an effect does the drug have?
* Can it be used safely in renal failure’ « What is the clearance in renal failure?

Power Bias & Imprecision
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The Confirming Question

e The most common Clinical Trial
Simulation guestion:

» “Can the Null Hypothesis be rejected?”

e Freguentist Hypothesis testing requires

» specification of rejection level
— Alpha e.g. 0.05 [Type | Error criterion]

» calculation of a test statistic
— E.g. likelihood ratio

» prediction of P associated with test statistic
e How can P be predicted?



The Randomization Test



What Is the True P Value?

e A critical issue for population model based
analysis
e Assumption that NONMEM OBJ Function

Difference is Chi-square distributed may be
dubious for confirming trial decisions

e The OBJ Function difference is the Likelihood
Ratio Test statistic

e Randomization Test uses computational
power to estimate the true P value for a
given data set and analysis method




Randomization Test

e |dea Is to create a data set that would be
expected if the Null Hypothesis was true

e Simplest case uses a binary covariate e.g.
treatment assignment

e The original data has actual treatment
assignment and outcome

e New data set Is identical except for re-
randomization of covariate so that the Null
Hypothesis will be true (under randomization)



Randomization Test

There are (at least) 3 methods that can be
considered for the randomisation of a
covariate:

1. Sample from a parametric distribution for the
covariate (‘simulation’)

2. Sample with re-sampling from the covariate
empirical distribution (like bootstrap)

3. Sample by permutation of the covariate
empirical distribution (no resampling)



RT Assignment Methods

Parametric Simulation Empirical Permutation
if (uran >= 0.5) if (nsub>1) {
rancov=1 i sub=i nt (nsub*uran) +1
el se rancov=COV[ i sub]
rancov=0 # renove COV[i sub]

for (i=isub; i<nsub; i++)
COV[i]=COV[i +1]
nsub- -
} else
Empirical ReSampling rancov=Co Al

| sub=i nt (nsub*uran) +1
rancov=COV[ i sub]
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Theophylline and Sex

e Randomized concentration controlled
trial of theophylline

Holford NHG, Black P, Couch R, Kennedy J, Briant

R. Theophylline target concentration in severe
airways obstruction - 10 or 20 mg/L? Clinical
Pharmacokinetics 1993;25(6):495-505

e Simple Pharmacodynamic Model
e Does Sex affect Theophylline Emax?



Model for Sex

$PRED

| f (sex.eq.0) then ;fenmale

f sxemk=THETA( 4)

el se
f sxenmx=1
endi f
EO= THETA( 1) *EXP( ETA(1))

EMAX=f sxenmx* THETA( 2) * EXP( ETA( 2) )
EC50=THETA( 3) * EXP( ETA( 3))
Y = E0 + EMAX* THEQ ( THEO+EC50) + ERR(1)
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NONMEM and RT

e Run Null and Alternate Models with Original Data
e Compute Original Data delta OBJ

dOBJorg=original null OBJ minus original alternate OBJ
Run Alternate Model with many (1000+) randomized
data sets

Compute Randomized Data delta OBJ

dOBJ= original null OBJ minus randomized data set OBJ

Sort on dOBJ and find quantile corresponding to
dOBJorg



WFN nmrt

e Any model/data
» Care with paths for user defined $SUB
e WFN command:
nnrt SEX t heopdsex 1 1000

e SEX Is an example of the covariate that will
be permuted to generate null data sets

e Results in theopd.rt_ SEX directory In
theopd.txt



Null Distribution (FOCE)
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True P and Critical DOBJ Values

Rep Dobj Obj P Chisq | P Quant | Quant/ChisQ | Decision
890 5.625 | 5795.706 | 0.017706 | 0.023139 1.306831
170 5.608 | 5795.723 | 0.017879 | 0.024145 1.350485 Reject
464 5.568 | 5795.763 | 0.018292 | 0.025151 1.374994
112 4.163 | 5797.168 | 0.041316 | 0.049296 1.193135
894 4,161 | 5797.17 | 0.041365 | 0.050302 1.216048
25 4.146 | 5797.185 | 0.041733 | 0.051308 1.229431
864 3.911 | 5797.42 | 0.047971 | 0.055332 1.153445
265 3.828 | 5797.503 | 0.050403 | 0.056338 1.11775
545 3.777 | 5797.554 | 0.051962 | 0.057344 1.103582
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Original Data dOBJorg FOCE =5.608




Theophylline Emax and Sex
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http://wfn.sourceforge.net/winrt.htm
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Theophylline Emax and Sex

Estimation Method Randomization Successful
Method runs % x2P | QuantileP | DOBJ(0.05,1)
Foce! Parametric 99.7 0.018 0.028 4.506
5.608 Non-Parm 99.7 0.018 0.033 4.570
Permutation 99.4 0.018 0.024 4.163
Fo' Parametric 99.7 0.051 0.073 4.407
3.816 Non-Parm 99.7 0.051 0.080 4.741
Permutation 99.5 0.051 0.065 4.115

e DOBJ FOCE %2 P closer to true P value?
e Method Permutation closer to x2 P?

1=Compagq Visual Fortran 6.6 Update A
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Randomization Test of
SEX and WT

Covariate | Parameter | Obj!l dOBJ | Randomization PPV?2
Test Probability3 Emax

None - 5801.3 0.27
5.599 | 0.024

Sex Emax 5795.7 0.22

Weightt Emax,EO 5813.5 0.43
0.235 | 0.635

Sex Emax 5813.3 0.43

Weightt Emax, EO

1=NONMEM V 1.1 FOCE 3=Compagq Visual Fortran 6.6 Update C
2=Population Parameter Variability (sqrt(w?)) 4=Allometric model on Emax and EO
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Likelihood Ratio Test Results

e Seems to be a smaller Emax in women
Against biological expectation (no effect)

e Adding weight worsens objective function and PPV suggesting
no effect of weight on PEFR
Against biological expectation (increase with size)
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Mixed up about Sex? Is there
another Way?

e A Bayesian approach is to estimate the
probabllity of one model being favoured
over another model

e NONMEM can use a mixture model to
estimate this probability

Thanks to Steve Duffull for suggesting this approach
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Mixture on Models

$PRED

|F (M XNUM EQ 1) THEN ; sex effect nodel
| F (SEX. NE. 1) THEN
FSXMETHETA(4) ;fenal e

ELSE
FSXM=1  ; nal e
ENDI F
ELSE
FSXM1 ; no effect of sex
ENDI F

E0O =THETA(1)*EXP(ETA(1))
EMAX=FSXM THETA( 2) * EXP( ETA( 2) )
EC50=THETA( 30* EXP( ETA( 3) )

Y =E0 + EMAX* THEQ ( THEO+EC50) + EPS(1)

$M X
NSPOP=2
P(1) =THETA(5) ; Prob of sex effect nodel

P(2)=1- THETA(5) ; Prob of no sex effect



Mixture Model Method

e Specify both models in the same
problem

e Estimate the mixture probability for each
model

e Bootstrap the mixture model

e Examine distribution of mixture
probabllity
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Step 1: Probability of Weight on Emax and EO

1000 Permutations/Bootstraps

Null Distribution
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Step 2: Probability of Sex on Emax

With and Without Weight on Emax and EO
1000 Permutations/Bootstraps

Null Distribution

(Permuted on Sex)
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Fractional Change of Emax in Females
1000 Bootstraps

Weight on Emax and EO Without Weight

Average 0.96 0.78
95% CI 0.72 -1.24 0.06-1.01
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Mixture Probability Results

Distribution when weight is included is very
different from the null when any weight
effect has been removed by permutation

No support for a sex effect
Confirms biological expectation

Suggests a weight effect on Emax and EO
Confirms biological expectation



Statistics

e “Significance”

» Count of Mixture Prob > 0.5
e “Weight of Evidence”

» Average of Mixture Probability
e Odds

» For = Weight/(1-Weight)

» Against=(1-Weight)/Weight



Mixture Model Odds
SEXand WT

Mixture P Mixture | Odds Odds

Significance | P Weight | For Against
No Weight 0.86 0.83 4.75 0.21
Weight on Emax 0.73 0.73 2.73 0.37
Weight on Emax and EO 0.45 0.52 1.07 0.93

©NHG Holford, 2005, all rights reserved.



e Fema
theop

Conclusion

es appear to have a smaller
nylline Emax for PEFR

e This 0
when

Ifference Is no longer supported
body size Is used to explain

between subject differences in Emax
and baseline PEFR

e Mixture models are an alternative to the
randomization test for model building



