



Slide		
1		
	The Population Approach	
	Describing The Signal and the Noise	
	Guangda Ma	
	Auckland Pharmacometrics Group Department of Pharmacology & Clinical Pharmacology The University of Auckland MEDSCI 719 2020	
Slide 2	Objectives	
	 To describe the naïve-pooled, two-stage and population approaches to analysis of (PKPD) data. 	
	 To learn how covariate models are specified using NM-TRAN. 	
	 To provide practical experience of performing population analysis using NONMEM. 	
	2	
Slide 3	Motivating Example	Previously in the course, analysis has focussed on data from a single individual. Clinical data
	 How can population data be analysed to obtain unbiased parameter estimates? 	however comes from a population. How can population data be analysed to obtain unbiased estimates of our parameters?
	140 120 100	A simulated PD dataset of five individuals will be used to illustrate the different approaches
		to data analysis. Here measured concentration is plotted against effect with each individual in a different colour.
	20 0 -20 0 1 2 3 4 5 6 7 8 9 Concentration	
	e G Ma, 200, at rights reserved.	

Slide 13	<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>		See also: Principles of Covariate Modelling. holford.fmhs.auckland.ac.nz/docs/ principles-of-covariate- modelling.pdf
Slide 14	 Covariate Models Continuous Covariates Weight FWT=(WT/70)**(3/4) Age FAGE= 1 + SLOPE*(AGE-60) Parameters: ¾ (theory), SLOPE Categorical Covariates Sex IF (SEX.EQ.1) THEN FSEX=1 ; male ELSE FSEX=FFEM ; female ENDIF Parameter: FFEM Multiplicative Covariate Effects FIXED EFFECTS: FWT, FAGE, FSEX GRP_EMAX=FWT * FAGE * FSEX * POP_EMAX 	4	POP_EMAX=THETA(1)
Slide 15	<pre>Parameter Variability Model • Normal (additive) EMAX = GRP_EMAX + PPV_SD • Proportional EMAX = GRP_EMAX + GRP_EMAX*PPV_CV • Log Normal EMAX = GRP_EMAX *EXP(PPV_CV) • Parameters: PPV_SD, PPV_CV</pre>		A proportional error model describes the random variability in a parameter as a proportion of the typical group value. This may result in negative individual parameters, thus a log-normal distribution is more biologically plausible. EMAX = GRP_EMAX *EXP(ETA(1))

Slide		1	
16	Modelling Workflow		
	 Run an Initial Model with No Estimation: Check model predictions versus observations Look for outliers 		
	 Identify Base Model Estimate residual error models (additive, proportion or combined) Estimate structural model (e.g. 1 or 2 cpt) Estimate random effects components (e.g. BSV, BOV) Identify Potential Covariate Relationships 		
	 Include Covariates one at a time to build the model 		
	© G Ma, 2020, al rights reasoned.	16	
Slide 17	Covariate Selection		
	 Which Covariate to Select Biological plausibility: Does the covariate have a biologically plausible explanation? Extrapolation plausibility: Does the model extrapolate sensibly outside the range of observed covariates? Statistical plausibility: Is the covariate statistically significant? Clinical relevance: Is the covariate effect size clinically important? Likelihood Ratio Test (LRT) For nested models the difference of two log-likelihoods is asymptotically chi-squared distributed, thus for 1 parameter difference (1 df) the critical value from the chi-squared distribution is 3.84 (P=0.05) 		
	0 G Ma, 2000, al rights reserved.	17	
Slide 18	Methods • Parametric Methods • NONMEM (NONlinear Mixed Effects Model) • R nlme, nlmixr • SAS NLMIXED • Certara Phoenix nlme • Non-Parametric Methods • NONMEM • NPML • NPFG • Expectation Maximization Methods • NONMEM • NONMEM • NONMEM • NONMEM • NONMEM • NOPEG		There are many methods and software available to do non- linear mixed effects modelling.
	© G Ma, 2000, all rights reserved.	18	