Placebo Response

Nick Holford
University of Auckland

Clinical Pharmacology

\[\text{Clinical Pharmacology} = \text{Disease Progress} + \text{Drug Action} \]

Components of a Disease Progress Model

- Baseline Disease State
- Natural History
- Active Treatment Response
- Placebo Response

\[S(t) = S_0 + \text{Nat. Hx.} + \text{Active} + \text{Placebo} \]

Slide 3

Disease progress models start with a baseline disease status, \(S_0 \).
The change from baseline in the absence of drug treatment describes the natural history of the disease (disease progression).
When drugs are used then the active effect of the drug modifies disease status. In clinical trials it is also necessary to consider the placebo response as a separate component.
More complex effects based on turnover models have been described in Post TM, Freijer JI, DeJongh J, Danhof M. Disease system analysis: basic disease progression models in degenerative disease. Pharm Res. 2005 Jul;22(7):1038-49.
Response to Inactive Treatment

- PLACEBO
 “I will please” -- Response improvement

- NOCEBO
 “I will harm” -- Response worsens

Some clinical responses will show a natural history pattern which approaches an asymptote. For example, pain scores after abdominal surgery typically decrease over a few days and approach zero. The asymptote may be non-zero as shown in the figure. This illustrates the improvement in the Hamilton Depression (HAM-D) rating scale after administration of a placebo in an antidepressant clinical trial. It is a matter of personal preference whether one calls this a change due to disease progress or a change due to placebo treatment. In this particular case the two mechanisms are indistinguishable.
Disease Progress and Placebo Models for Depression Response

<table>
<thead>
<tr>
<th>Models</th>
<th>Equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Progress</td>
<td>(S(t) = S_0)</td>
</tr>
<tr>
<td>Placebo Response</td>
<td>(\text{Placebo}(t) = D_{\text{rem}} \left(1 - e^{-\frac{t}{T_{\text{rem}}}} \right))</td>
</tr>
<tr>
<td>HAM-D Time Course</td>
<td>(\text{HAMD}(t) = S(t) + \text{Placebo}(t))</td>
</tr>
</tbody>
</table>

An application of an exponential model with a nonzero asymptote is shown here. The disease progress model is assumed to remain constant and the change with time is attributed to a placebo response. An exponential model with an asymptote of \(D_{\text{rem}} \) (the size of the remission expressed as the placebo 'dose') and a half-life \(T_{\text{rem}} \) (the half-life of remission induced by placebo) is used to describe the placebo response. There is a delay before the onset of the placebo effect which can be described with \(T_{\text{lag}} \) (lag time).

The placebo response in anti-depressant trials is not always monophasic. Sometimes it is possible to discern a relapse (i.e. worsening of HAM-D) during the trial. The relapse component of the response can be described by a simple change to the asymptotic progress model.
A two exponential model with a biphasic pattern is known as the Bateman function.

\[
\text{Placebo}(t) = \frac{D_{\text{rem}} \cdot K_{\text{rem}}}{(K_{\text{rem}} - K_{\text{rel}})} \left(e^{-K_{\text{rel}}(t-T_{\text{lag}})} - e^{-K_{\text{rem}}(t-T_{\text{lag}})} \right) \\
\text{HAMD}(t) = S_0 + \text{Placebo}(t)
\]

- \(S_0\) = Baseline HAM-D
- \(T_{\text{lag}}\) = Placebo-onset lag - time
- \(D_{\text{rem}}\) = Remission Dose
- \(K_{\text{rem}}\) = Remission Half-life
- \(K_{\text{rel}}\) = Relapse Half-life

What is the Time Course of Placebo Response?

- Placebo Arm of Double Blind Randomized Phase II Study of New Potential Anti-Depressants
 - Total 582 patients, 3864 observations
 - Drug X, Study A (154 patients)
 - Drug X, Study B (141 patients)
 - Drug Y, Study C (149 patients)
 - Drug Y, Study D (138 patients)
Time Course of Placebo Response in Depression

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>24</td>
<td>HAM-D</td>
</tr>
<tr>
<td>Lag time</td>
<td>4.7</td>
<td>days</td>
</tr>
<tr>
<td>Remission amplitude</td>
<td>20.6</td>
<td>HAM-D</td>
</tr>
<tr>
<td>Remission half-life</td>
<td>60</td>
<td>days</td>
</tr>
<tr>
<td>Relapse half-life</td>
<td>280</td>
<td>days</td>
</tr>
</tbody>
</table>
Relapse Mixture Model

- Assume some patients relapse (get worse while on placebo treatment)
- Assume patients who do not relapse have infinite relapse half-life
- Probability of patient having a relapse is estimated using a mixture model

Relapse Probability

<table>
<thead>
<tr>
<th>Study</th>
<th>Relapse Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study A</td>
<td>98%</td>
</tr>
<tr>
<td>Study B</td>
<td>45%</td>
</tr>
<tr>
<td>Study C</td>
<td>29%</td>
</tr>
<tr>
<td>Study D</td>
<td>18%</td>
</tr>
</tbody>
</table>

Why are relapse probabilities different?

Is It a Design Issue?

HAM-D Observation Times
Observation Effect Model

- Each HAM-D observation is a “dose” of placebo
- Placebo “conc” rises and falls like oral drug absorption model
- Placebo “conc” shortens remission and relapse half-lives

Observation Effect on Placebo Response

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo onset half-life</td>
<td>0.12 days</td>
</tr>
<tr>
<td>Placebo elimination half-life</td>
<td>31 days</td>
</tr>
<tr>
<td>Placebo effect on remission</td>
<td>-40%</td>
</tr>
<tr>
<td>Placebo effect on relapse</td>
<td>-64%</td>
</tr>
</tbody>
</table>

Disease Progression and Placebo Response

- Requires assumption about shape of disease progression (natural history)
- Commonly disease progression is linear
- Placebo (or nocebo) observed response will be the sum of disease progression and the placebo (nocebo) time course
With any disease progress model it is possible to imagine a drug action that is equivalent to a change in the baseline parameter of the model. This kind of effect on disease produces a temporary offset. When treatment is stopped the response to the drug washes out and the status returns to the baseline. In many cases it is reasonable to suppose that the processes governing a delay in onset of drug effect will also affect the loss of effect but the offset effects of levodopa treatment in Parkinson’s disease are one exception to this assumption.

Muscular dystrophy causes a progressive loss of muscle strength. This graph shows the author’s belief that the natural history is essentially linear over 6 months. The effects of two doses of prednisone demonstrate a delayed onset of effect but no change in the rate of progression after the maximum effect is achieved. This seems to be an example of an offset type of drug effect. The response to placebo is also delayed but differs from prednisone by loss of effect and return to the natural history rate of progression. The difference in time course of drug action, placebo response and natural history components allows these three phenomena to be distinguished.

Slide 24

Parkinson’s Disease Inactive Treatment

Clinical Trials
- **DATATOP** cohort: early untreated PD patients to determine if deprenyl and/or tocopherol administration will prolong time before levodopa rescue. Multicenter, randomized, double-blind, placebo-controlled, 800 subjects. DATATOP cohort followed up to 8 years (data). Tocopherol was shown to be inactive so it has been included with placebo-treated patients as an inactive control treatment.
- **ELLDOPA** effect of early or later levodopa treatment on rate of PD progression. Multicenter, randomized, dose-ranging, double-blind, placebo-controlled without design. 361 patients, 11 months.
- **TEMPO** comparison of 1 mg/d and 2 mg/d of Rasagiline in early PD patients not treated with levodopa. Multicenter, randomized, double-blind, delayed start design. 360 patients, 12 months.
Disease Progression And Placebo/Nocebo in Parkinson’s Disease

![Graph showing disease progression over years with Placebo and Nocebo comparisons.](image)

Parkinson's Disease Placebo and Nocebo

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Units</th>
<th>Average</th>
<th>RSE</th>
<th>95% 2.5%</th>
<th>95% 97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>POP_S0</td>
<td>Baseline UPDRS</td>
<td>u</td>
<td>23.1</td>
<td>0.019</td>
<td>22.2</td>
<td>24.0</td>
</tr>
<tr>
<td>POP_ALPHA</td>
<td>Progression rate</td>
<td>u/y</td>
<td>12.7</td>
<td>0.100</td>
<td>10.6</td>
<td>15.5</td>
</tr>
<tr>
<td>POP_PMAX</td>
<td>Maximum 'placebo' benefit</td>
<td>u</td>
<td>-5.09</td>
<td>-0.288</td>
<td>-8.22</td>
<td>-3.12</td>
</tr>
<tr>
<td>POP_TAB</td>
<td>'Placebo absorption' half-life</td>
<td>day</td>
<td>202</td>
<td>0.438</td>
<td>111</td>
<td>469</td>
</tr>
<tr>
<td>FTEL</td>
<td>'Placebo elimination' half-life fraction of POP_TAB</td>
<td>x 100</td>
<td>0.805</td>
<td>2.64</td>
<td>0.005</td>
<td>4.11</td>
</tr>
<tr>
<td>Probability</td>
<td>Probability of positive response (PMAX)</td>
<td></td>
<td>0.162</td>
<td>0.298</td>
<td>0.066</td>
<td>0.254</td>
</tr>
</tbody>
</table>

Pmax for placebo is negative to describe improvement in response with inactive treatment.

Placebo Response Summary

- A part of the disease progress model
- Usually requires an assumption about the natural history
- May be a key part of the overall response to treatment
- Quantitative models are helpful for understanding active and inactive treatment responses
©NHG Holford, 2013 all rights reserved.

Disease Progress, Placebo/Nocebo, Termination Event

IF (NIDM.EQ.1) THEN ; Nocebo
PMAX=POP_PMAX*F_Pmax
ENDIF ; Peak response
FPmax=-FPOSPmax*FPOSET
ELSE MEAN_PLACEBO
DPmax=1
ENDIF ; Placebo

PMAX=POP_PMAX*FPmax*EXP(PPV_PMAX) ; nominal placebo ‘dose’
BPLA=PMAX*(Kab-Kel)/((Kab*(EXP(-LOG(Kab/Kel))*Kab/(Kab-Kel)) - EXP(-LOG(Kab/Kel))*Kab/(Kab-Kel)))) ; Baseline disease status

A_0(1)=S0

DSTAT=DDPRG+DPLA ; progression + placebo

IF (DVID.EQ.1) THEN
F_FLAG=0 ; Continuous ELS
Y = NH + PLA + ERRSD
ENDIF

IF (DVID.EQ.2.AND.DV.EQ.0) THEN ; Censored
F_FLAG=1 ; Likelihood
Y=SRVT
ENDIF

IF (DVID.EQ.2.AND.DV.EQ.1) THEN ; Event
F_FLAG=1 ; Likelihood
Y=SRVZ - SRVT
ENDIF

IF (DVID.EQ.3) THEN
SRVZ=SRVT ; Save S(t) for start of censor interval
ELSE
SRVZ=SRVZ ; Keep NM-TRAN happy
ENDIF