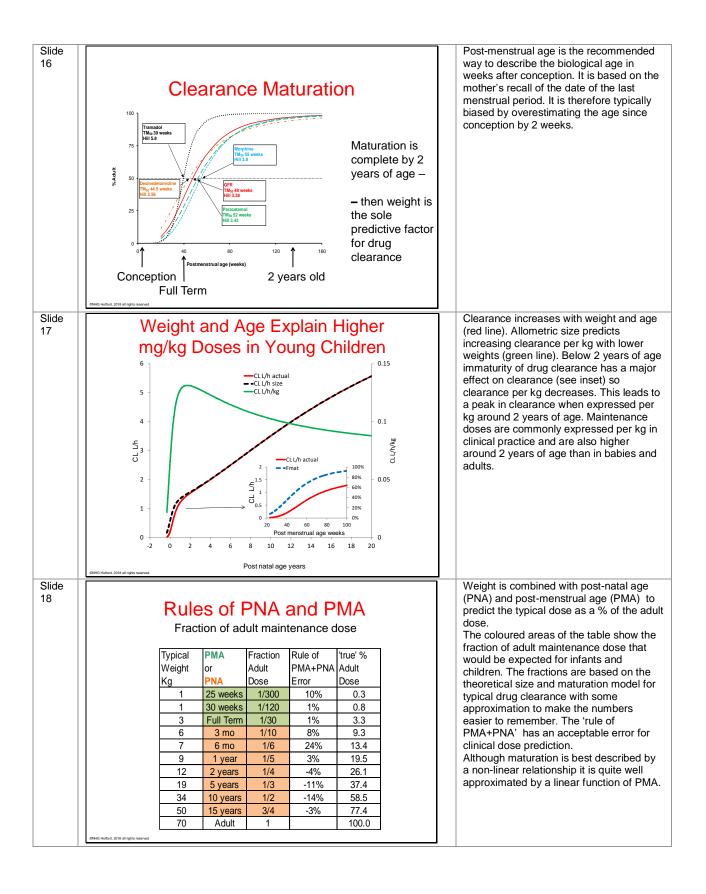

Slide	
	PKPD Changes with Age Body Size, Body Composition, Maturation and Organ Function, Targets & Receptors Nick Holford Dept Pharmacology & Clinical Pharmacology University of Auckland
Slide	
2	 Objectives Understand the major sources of variability affecting the response to medicines Appreciate the relative contributions of body size, body composition, maturation and organ function to variability in pharmacokinetics Appreciate the relative contributions of target and receptor changes to variability in pharmacodynamics Learn the principles of dose individualization based on predictable sources of variability
	GNAG Nations, 2018 all rights reserved.
Slide 3	
	Body Size is the most important
	quantitative determinant of drug dose
	 The human body weight range varies from about 500 g to over 250 kg due to both biological variability and changes over the lifespan. This more than 500 fold range in size is directly translatable through volume of distribution into drug
	loading dose differences
	Because of allometrically predictable relationships beween weight and clearance the corresponding range of maintenance dose rates is only about 100 fold
	ChenQ Hottors, 2018 all rights reserved.



Slide 8	Renal Function • Differences in renal function can explain about a 10 fold difference in total drug clearance. • Glomerular Filtration Rate * 7 L/h in healthy young adult * 0.5 L/h in terminal renal failure • GFR decreases with age from 30 y • There is always some non-renal clearance e.g. via the gut which adds 0.5 L/h to renal clearance even in renal failure		Lonsdale DO, Baker EH, Kipper K, Barker C, Philips B, Rhodes A, et al. Scaling beta-lactam antimicrobial pharmacokinetics from early life to old age. Br J Clin Pharmacol. 2018;doi:10.1111/bcp.13756.
Slide 9		1	
	Prediction of Renal Function		
	 Serum Creatinine is Used to Calculate Creatinine Clearance (CLcr) 		
	 CLcr is approximately the same as glomerular filtration rate 		
	 Renal function is calculated relative to normal CLcr for weight and age: 		
Slide		-	Cockcroft & Gault method is
10	Predicting Creatinine Clearance		recommended for prediction of drug clearance. The formula is based on clearance concepts and uses weight, age and sex to predict creatinine production rate based on expected muscle mass.
	$CLcr = \frac{Creatinine\ Production\ Rate}{Serum\ Creatinine}$		Schwartz methods developed for children and babies using height as a measure of body size. MDRD and eGFR methods developed for
	Creatinine Production Rate = $\frac{(140 - Age) \times Weight}{72}$		diagnosis of different categories of renal function. These are empirical formulae
	Note: CPR decreases with age. This is not the cause of the decrease of CLcr with age.		that do not include body size (Levey et al. 1999). Cockcroft DW, Gault MH. Prediction of
	Adults: Cockcroft & Gault, MDRD and eGFR Children and babies Schwartz		creatinine clearance from serum creatinine. Nephron. 1976;16:31-41. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New Equations to Estimate GFR in Children with CKD. J Am Soc Nephrol. 2009:ASN.2008030287. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate
			method to estimate glomerular filtration rate from serum creatinine: a new

		prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461-70.
Slide 11	 Renal Function and Age Glomerular Filtration/Tubular Secretion Increase with maturation until 2 y Decrease in adults from 30 y Nephrons Nephrons die due to many causes Infection, ischaemic events, "ageing" 	Rule AD, Glassock RJ. The ageing kidney https://www.uptodate.com/contents/the- aging-kidney. UptoDate. 2017.
Slide 12	Hepatic Function • Difficult to predict hepatic drug clearance without administering the drug • "Liver Function Tests" • measure liver damage which is not the same as function • AST/ALT may be very high (1000s) in viral hepatitis with no changes in hepatic drug clearance • Albumin and INR changes in terminal hepatic failure are correlated with hepatic drug clearance • Clinical Staging Systems • Child-Pugh system • Loosely correlated with hepatic drug clearance	

Olivia		_	
Slide 13	Hepatic Function and Age		
	 Hepatic Function » Increases with maturation until 2 y » No change in adults 		
	 Hepatic cells turnover every 2 weeks » Enzymes are "new" » Structure determined by DNA 		
Slide 14	 How Old is a Baby? Post-natal age (PNA) Does not account for <i>in utero</i> maturation Post-menstrual age (PMA) On average 2 weeks longer than biological age Post-conception age (PCA) The biological age but not widely recorded 		The age of a baby may be described using several kinds of "age". Post-natal age (PNA). This is the age (e.g. days) since birth. It does not account for in utero maturation of body structure and function. Post-menstrual age (PMA). This is the age (e.g. weeks) since the mother's last menstrual period. On average it is 2 weeks longer than biological age Post-conception age (PCA). This is the age (e.g. weeks) since conception. This is the best description of biological age but it is not widely recorded because the date of conception is often difficult to identify. Gestational age (GA). Defined by the PMA at birth. GA does not change with time. Post menstrual age is the recommended way to describe biological age. This recommendation is pragmatic rather than theoretically correct.
Slide 15	 Maturation and Ageing Maturation Of Drug Clearance Typical maturation is about 30% of adult values at full term delivery Very premature neonates are around 10% of adult values In neonates and infants age accounts for a 10 fold increase in glomerular filtration rate from 24 weeks post-menstrual age up to 1 year of post-natal age (Rhodin et al. 2009). Ageing and Drug Clearance Age in older adults has a minor (~ 25% lower) influence on drug clearance once weight and other factors such as renal function are accounted for. 		Rhodin, M. M., B. J. Anderson, A. M. Peters, M. G. Coulthard, B. Wilkins, M. Cole, E. Chatelut, A. Grubb, G. J. Veal, M. J. Keir and N. H. Holford (2009). "Human renal function maturation: a quantitative description using weight and postmenstrual age." <u>Pediatr Nephrol</u> 24(1): 67-76.

Slide 19	 Pharmacodynamics Receptor turnover every few weeks Enzymes are "new" Structure determined by DNA In principle there is no receptor based reason for changes in drug effects However, body function (especially CNS) is complex with many feedback processes Age related changes in drug action are due to physiological changes 	Gianluca T, Edoardo S. Age-related Changes in Pharmacodynamics: Focus on Drugs Acting on Central Nervous and Cardiovascular Systems. Current Drug Metabolism. 2011;12(7):611-20.
Slide 20	Warfarin and AgeImage: Image: Image	Xue L, Holford N, Ding XL, Shen ZY, Huang CR, Zhang H, et al. Theory-based pharmacokinetics and pharmacodynamics of S- and R-warfarin and effects on international normalized ratio: influence of body size, composition and genotype in cardiac surgery patients. Br J Clin Pharmacol. 2017;83(4):823-35.
Slide 21	Body size, renal function and post- menstrual age are the most important predictable determinants of drug dose • In comparison to these factors other covariates such as genotype often pale into insignificance. • Quantitative pharmacology can help put the role of using covariates to predict drug dose into a realistic perspective • Pharmacodynamic differences are largely due to physiological adaptive changes	Rothwell PM, Cook NR, Gaziano JM, Price JF, Belch JFF, Roncaglioni MC, et al. Effects of aspirin on risks of vascular events and cancer according to bodyweight and dose: analysis of individual patient data from randomised trials. The Lancet. Theken KN, Grosser T. Weight-adjusted aspirin for cardiovascular prevention. The Lancet. 2018;392(10145):361-2.