

Slide 6	Hepatic Function • Difficult to predict hepatic drug clearance without administering the drug • "Liver Function Tests" * measure liver damage which is not the same as function • Clinical Staging Systems * Childs Pugh system/MELD/HPSE * Loosely correlated with hepatic drug clearance	Population predictions of hepatic function are possible but individual predictions do not have any reliable biomarkers like serum creatinine for renal function. MELD=Model for Evaluation of Liver Disease HPSE=Hepatic Portal Systemic Elements
Slide 7	 Maturation of Drug Clearance Typical maturation is about 30% of adult values at full term delivery Very premature neonates are around 10% of adult values In neonates and infants age accounts for a 10 fold increase in glomerular filtration rate from 24 weeks post-menstrual age up to 1 year of post-natal age (Rhodin et al. 2009). Age in older adults has a minor (~ 25% lower) influence on drug clearance once weight and other factors such as renal function are accounted for. 	There is a very important biological difference between age in young humans and old humans. Young humans (babies, infants) are immature. They have size appropriate organs but have not yet developed functional capacity. Old humans lose renal function as a consequence of nephron loss related to environmental hazards (not age) but do not lose hepatic function because the liver regenerates its cells and enzymes irrespective of age. Rhodin, M. M., B. J. Anderson, A. M. Peters, M. G. Coulthard, B. Wilkins, M. Cole, E. Chatelut, A. Grubb, G. J. Veal, M. J. Keir and N. H. Holford (2009). "Human renal function maturation: a quantitative description using weight and postmenstrual age." <u>Pediatr Nephrol 24(1): 67-76.</u>
Slide 8	Weight and Age Explain Higher mg/kg Doses in Young Children 0 0 0	Clearance increases with weight and age (red line). Allometric size predicts increasing clearance per kg with lower weights (green line). Below 2 years of age immaturity of drug clearance has a major effect on clearance (see inset) so clearance per kg decreases. This leads to a peak in clearance when expressed per kg around 2 years of age. Maintenance doses are commonly expressed per kg in clinical practice and are also higher around 2 years of age than in babies and adults. The green line (clearance/kg) is consistent with long standing empirical knowledge of drug dosing in children. It is explained by the combination of two biological processes – size and maturation.

