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Applications
• Continuous Response

– Standard PKPD

• Non-continuous Response
– Binary Response

• Awake or Asleep

– Ordered Categorical Response
• Neutropenic adverse event type

– Count Response
• Frequency of epileptic seizures

– Time to Event
• Bone fracture

– Dropout
• Missing data

• Joint Response
– Continuous plus non-continuous

 

NONMEM  (and many other parameter 
estimation procedures) uses the 
likelihood to guide the parameter 
search. The likelihood is the 
fundamental way to describe the 
probability of any observation given a 
model for predicting the observation. 
NONMEM shields us from the details for 
common PKPD models that use 
continuous response scales for the 
observation (e.g. drug concentration, 
effect on blood pressure). 
 
A variety of non-continuous responses 
are widely used to describe drug effects 
– especially clinical outcomes. By 
computing the likelihood directly for 
each of these kinds of response we can 
ask NONMEM to estimate parameters 
for any mixture of response types. 
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Continuous Variable

Likelihood  = Probability

 

For a continuous response type (the 
default for NONMEM) the likelihood is 
computed using the extended least 
squares objective function (ELS). Each 
observation (Yobs) and each prediction 
(Ypred), along with the predicted 
variance of the difference between Yobs 
and Ypred (Var) are used to compute a 
contribution to the ELS objective 
function. This contribution is summed 
over all subjects and all observations to 
compute -2 times the log of the 
likelihood. Actually its not quite -2LL but 
proportional to it. It is missing a constant 
(-NOBS/2*Ln(2*Pi)) but this is not 
needed in order to minimize -2LL and 
obtain maximum likelihood estimates. 
 
The likelihood of an observation is also 
the probability of an observation so if we 
have a predicted probability it can be 
easily converted to the -2LL equivalent. 
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NONMEM

• NONMEM Maximises the Likelihood

• $ESTIMATION

METHOD=CONDITIONAL LAPLACIAN

LIKE or -2LL

 

NONMEM maximises the likelihood 
when estimating parameters. 
 
There is a pair of default subroutines 
(CCONTR and CONTR) that are used 
to compute the Conditional 
CONTRibution to the likelihood. 
 
The NM-TRAN $ESTIMATION record 
can have an option that allows the user 
to directly return the likelihood or -2LL 
instead of letting NONMEM compute it 
with its CCONTR and CONTR 
subroutines. This option always requires 
the CONDITIONAL method (FOCE) and 
is thought to work better if the 
LAPLACIAN option is used. 
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Standard Method
$PROB theophylline pharmacodynamics

;standard control stream

$DATA theopd.dat IGNORE #

$INPUT ID TIME THEO AGE WT

SEX RACE DIAG DV

$ESTIM METHOD=COND LAPLACIAN

$COV

$THETA (0,150.,)  ; POP_E0

$THETA (0,200.,)  ; POP_EMAX

$THETA (.001,10,) ; POP_EC50

$OMEGA 0.5  ; PPV_E0

$OMEGA 0.5  ; PPV_EMAX

$OMEGA 0.5  ; PPV_EC50

$SIGMA 100   ; RUV_SD

$PRED

E0=POP_E0*EXP(PPV_E0)

EMAX=POP_EMAX*EXP(PPV_EMAX)

EC50=POP_EC50*EXP(PPV_EC50)

EFFECT = E0 + EMAX*THEO/(THEO+EC50)

Y=EFFECT + RUV_SD

 

Here is an example of part of an NM-
TRAN control stream which shows the 
standard method that NONMEM uses to 
compute the likelihood. The prediction is 
returned in the variable Y and 
NONMEM will figure out from Y and the 
DV and the RUV_SD (e.g. EPS(1)) how 
to compute the ELS contribution to -
2LL. 
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-2LL Example
$PROB theophylline pharmacodynamics

;-2LL option using SD

$DATA theopd.dat IGNORE #

$INPUT ID TIME THEO AGE WT

SEX RACE DIAG DV

$ESTIM METHOD=COND LAPLACIAN -2LL

$COV

$THETA (0,150.,)  ; POP_E0

$THETA (0,200.,)  ; POP_EMAX

$THETA (.001,10,) ; POP_EC50

$OMEGA 0.5  ; PPV_E0

$OMEGA 0.5  ; PPV_EMAX

$OMEGA 0.5  ; PPV_EC50

$THETA 10   ; RUV_SD

$PRED

E0=POP_E0*EXP(PPV_E0)

EMAX=POP_EMAX*EXP(PPV_EMAX)

EC50=POP_EC50*EXP(PPV_EC50)

EFFECT = E0 + EMAX*THEO/(THEO+EC50)

Y=((DV-EFFECT)/RUV_SD)**2 + 2*LOG(RUV_SD)

 

Here is one way to compute -2LL 
explicitly and return the -2LL value in 
the variable Y. The $ESTIMATION 
option -2LL tells NONMEM not to try to 
compute the -2LL contribution internally. 
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Alternatives

• -2LL (variance)
$ESTIM -2LL

$THETA (1,250) ; RUV_VAR

M2LL=(DV-EFFECT)**2/RUV_VAR + LOG(RUV_VAR)

Y=-0.5*M2LL

• LIKE (standard deviation)
$ESTIM LIKE

$THETA (1,10) ; RUV_SD

M2LL=((DV-EFFECT)/RUV_SD)**2 + 2*LOG(RUV_SD)

Y=EXP(-0.5*M2LL)

• LIKE (variance)
$ESTIM LIKE

$THETA (1,250) ; RUV_VAR

M2LL=(DV-EFFECT)**2/RUV_VAR + LOG(RUV_VAR)

Y=EXP(-0.5*M2LL)

 

Other ways to compute -2LL or the 
LIKELIHOOD are shown here. 
Note that results of these different 
methods may be not be the same 
because of small numerical differences 
in the way the calculations are 
performed. 
There is no right answer. 
 
 

Slide 

8 

©NHG Holford, 2008, all rights reserved.

Logistic Model
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The logistic model is a trick for 
predicting probabilities which must lie 
between 0 and 1. There are other 
transformations that might be used e.g. 
see http://www.page-
meeting.org/page/page2005/PAGE2005
O16.pdf (talk by Adrian Dunne at PAGE 
in Pamplona). We can right a model 
using any form we like in the logistic 
domain. The value obtained is called 
the logit. It is transformed back to a 
probability (i.e. likelihood) and this value 
can then be used by NONMEM. 
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Binary Response
$ESTIMATION METHOD=CONDITIONAL 

LAPLACIAN LIKELIHOOD

$THETA 

(0,0.3,1) ; BASEP

0.1 ; BETA

$OMEGA .5 ; PPV_EVENT

$ERROR

BASE=LOG(BASEP/(1-BASEP))

LGST=BASE + BETA*CP + PPV_EVENT

P1=1/(1+EXP(-LGST))

IF (DV.EQ.1) Y=P1

IF (DV.EQ.0) Y=1-P1

 

The simplest kind of non-continuous 
response is binary. This is a fragment of 
NM-TRAN code that implements the 
logistic transformation. BASEP is the 
baseline probability of the response with 
a DV value of 1. The probability of a DV 
of 0 is 1 minus this probability. 
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Ordered Categorical Response

; Effect of drug

Edrug=Beta*Cp

; Compute cumulative logit

B0=Lgt0

B1=B0 + Lgt1

B2=B1 + Lgt2

; A0 - A2 are the cumulative logits with 

subject-specific random effects

A0=B0 + Edrug + ppv_event

A1=B1 + Edrug + ppv_event

A2=B2 + Edrug + ppv_event

; P0 - P2 are the cumulative probabilities

; p0=P(Y<=0), p1=P(Y<=1) =p0+p1, 

; p2=P(Y<=2) =p0+p1+p2

P0=1/(1+EXP(-A0)

P1=1/(1+EXP(-A1)

P2=1/(1+EXP(-A2)

; exit if the probabilities are 

; not ordered correctly

IF (P0.GE.P1) EXIT 1 101

IF (P1.GE.P2) EXIT 1 102

IF (DV.EQ.0) Y=P0

IF (DV.EQ.1) Y=P1-P0

IF (DV.EQ.2) Y=P2-P1

IF (DV.EQ.3) Y=1-P2

 

Ordered categorical responses are 
expressed as the cumulative logit for 
each level of response. In this case 
there are 4 categories of response. The 
trick is to compute the cumulative logit 
for each category then compute the 
individual contributions to the 
cumulative probability at the end in 
order to predict the probability of the 
observed DV value. 
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Count Response

;Stirlings formula for log DV 

factorial

IF (DV.GT.1) THEN

LDVFAC=(DV+.5)*LOG(DV)-

DV+.5*LOG(6.283185)

ELSE

LDVFAC=0

ENDIF

Y=-2*(-COUNT+DV*LOG(COUNT)-LDVFAC)

$ESTIM MAXEVAL=9990 METHOD=COND LAPLACE 

-2LL

$ERROR

COUNT=BaseCount + Beta*CP + ppv_event

;Simulate count

IF (ICALL.EQ.4) THEN

T=0

NEVENT=0

DO WHILE (T.LT.1)

CALL RANDOM (2,R)

T=T-LOG(1-R)/COUNT

IF (T.LT.1) NEVENT=NEVENT+1

ENDDO

DV=NEVENT

ENDIF

 

Counts are a special kind of categorical 
response. The probability of a count can 
be predicted using the Poisson 
distribution.  
 
This NM-TRAN fragment shows how 
Stirling’s formula is used to calculate the 
natural log of the factorial of the 
observed count. This is used in the last 
line to predict the probability of the 
observed count (DV) and the predicted 
count (COUNT). 
 
The ICALL.EQ.4 block shows how to 
simulate a count under the Poisson 
distribution (Frame et al 2003).  The 
LOG(1-R) is required rather than the 
simpler LOG(R) because it is possible 
that R is 0 but it cannot be 1. Thus the 
LOG(1-R) code avoids an error caused 
by LOG(0). 
 
The theory why this algorithm works is 
mathematically complex. Mats Karlsson 
(nmusers 2009) described a simple 
view: “The code is simulating one event 
after another on a time interval 
standardized by lambda. You sample a 
survival probability, translate that into a 
time, check if it is beyond the 
standardized interval, if not increase N 
and add the event time to the elapsed 
time in the interval. “ 
 
Frame B, Miller R, Lalonde RL. 
Evaluation of Mixture Modeling with 
Count Data using NONMEM. Journal of 
Pharmacokinetics and 
Pharmacodynamics. 2003;30(3):167-83. 
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Hazard, Risk, Survival
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The probability of a having an event at a 
particular time can be predicted by 
describing the hazard for the event. 
Hazard is the instantaneous risk of the 
event. As time passes the cumulative 
hazard predicts the risk of having the 
event over the interval 0-t. 
The hazard model shown here is a 
proportional hazard models which is 
widely used for survival analysis. Beta0 
is the baseline hazard. Beta is a 
parameter describing how the hazard 
depends on some other value, X. 
The risk is the cumulative hazard. It is 
obtained by integrating hazard with 
respect to time. 
The probability of survival (not having 
the event)  can be predicted from the 
cumulative hazard. 
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Survival in a Bathtub

“… a bathtub-shaped hazard is appropriate in populations followed from birth.” 
Klein, J.P., and Moeschberger, M.L. 2003. Survival analysis: techniques for censored and truncated data. New York: Springer-Verlag.

,...),,( ageracesexfHazard

 

The hazard describes the death rate at 
each instant of time. The shape of the 
hazard function over the human life 
span has the shape of a bathtub.  
US mortality data shows the hazard at 
birth falls quickly and eventually returns 
to around the same level by the age of 
60. The hazard is approximately 
constant through childhood and early 
adolescence. The onset of puberty and 
subsequent life style changes (cars, 
drugs,…) adopted by men increases the 
hazard to a new plateau which lasts for 
10 to 20 years. 
It would require a time varying model to 
describe how development (children) 
and ageing (adults) are associated with 
changes in death rate. 
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Right Censored Time to Event
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Using NONMEM nomenclature, DV is a 
the observed drop-out state. If it is 0 it 
means the subject has not dropped out. 
If it is 1 then the subject has dropped 
out at some time between the last 
observation when they had not dropped 
out and the current time when it is 
known they have dropped out. 
The probability of a drop-out event is 
conditional on whether drop-out has not 
occurred at the time of the probability 
prediction. 
This model shows the probability of not 
dropping out depends on the hazard 
accumulated from time 0 until the time 
of the current observation given that the 
subject has not dropped out (DV=0). In 
this example the hazard uses the 
predicted disease state value rather 
than the observed disease state value. 
At the time a subject is known to have 
dropped out (DV=1) the probability of 
this happening is the product of the 
probability they the subject had not 



dropped out at the time of the last 
observation (when it was known they 
had not dropped out) and the probability 
of dropping out at some time between 
the last observation and the current time 
when it known the subject has dropped 
out. 
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Right Censored

Time to Event
$ESTIM MAXEVAL=9990 METHOD=COND 

LAPLACE NOABORT LIKE

$THETA

10  FIX    ; POP_CL

100 FIX    ; POP_V

0.1        ; BETA

(0,0.01)   ; BASE

;Random effect for baseline hazard

$OMEGA 0.01 ; PPV_HAZ 

$SUBR ADVAN=6 TOL=3

$MODEL

COMP=(CENTRAL)

COMP=(RISK)

$PK

CL=POP_CL

V=POP_V

BETA=BETA

BASHAZ=BASE*EXP(PPV_HAZ)

$DES

DCP=A(1)/V

DADT(1)=-CL*DCP

DADT(2)=BASHAZ*EXP(BETA*DCP)

$ERROR

CP=A(1)/V

CUMHAZ=A(2)

PSURV=EXP(-CUMHAZ)

IF (DV.EQ.0) THEN

Y=PSURV ; censored event

ELSE

HAZNOW=BASHAZ*EXP(BETA*CP)

Y=PSURV*HAZNOW ; Prob of having an

; event at time=TIME

ENDIF

 

Estimation of the parameters of any 
hazard model can be done using this 
kind of code. It uses ADVAN6 to 
integrate the hazard and obtain the 
cumulative hazard. The cumulative 
hazard is used in $ERROR to calculate 
the probability of survival (PSURV) i.e. 
the probability of not having the event at 
a particular time (DV=0). If the event 
occurs (DV=1) at the time of the record 
then the probability of having it is the 
product of the probability of not having it 
times the instantaneous risk. 
 
Note that this code cannot be used for 
simulating time to event. Simulation of 
time to event is a tricky business with 
NONMEM. 
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Right Censored Data

Single Event

#ID TIME DV MDV EVID CMT AMT Comment

1 0 0 1 1 1 100 Dose

1 50 1 0 0 1 0 Event

2 0 0 1 1 1 100 Dose

2 75 1 0 0 1 0 Event

3 0 0 1 1 1 100 Dose

3 100 0 0 0 1 0 Censored Event

4 0 0 1 1 1 100 Dose

4 25 1 0 0 1 0 Event

5 0 0 1 1 1 100 Dose

5 100 0 0 0 1 0 Censored Event

 

Single event observations (e.g. death) 
have just one observation event. 
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Right Censored Data

Repeated Events

#ID TIME DV MDV EVID CMT AMT Comment

1 0 0 1 1 1 100 Dose

1 50 1 0 0 2 0 First Event

1 50 0 1 2 -2 0 Reset Cum Hazard

1 50 0 1 2 2 0 Turn on

1 75 1 0 0 2 0 Second Event

1 75 0 1 2 -2 0 Reset Cum Hazard

1 75 0 1 2 2 0 Turn on

1 100 0 0 0 2 0 Censored Event
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Joint Models

• Basic concept

Compute LIKE (or -2LL) for ANY response

• All types of response can be combined

• F_FLAG (NMVI) or user written CCONTR 

(NMV) allows combining continuous 

responses with non-continuous responses

 

Any kind of response, continuous or 
non-continuous, can be combined in a 
NONMEM model by using the joint 
likelihood computed for each 
observation. A user written CCONTR is 
used to tell NONMEM how to compute 
the likelihood (or -2LL) for continuous 
responses. It is up to the user to 
compute the likelihood (or -2LL) for any 
non-continuous responses. 
 
 

Slide 

19 

©NHG Holford, 2008, all rights reserved.

Joint Model NMVI

$DATA ID TIME AMT TYPE DV

$ESTIM MAXEVAL=9990 METHOD=COND LAPLACE 

NOABORT

$SUBROUTINE ADVAN=2 TRAN=2 

$ERROR

; Continuous response 

CP=F

CPEST=CP + ruv_sd

; Non-continuous response

BASE=LOG(BASEP/(1-BASEP))

LGST=BASE + BETA*CP + PPV_EVENT

ODDS=EXP(LGST)

P1=ODDS/(1+ODDS)

IF (DV.EQ.1) ODDEST=P1

IF (DV.EQ.0) ODDEST=1-P1

IF (TYPE.LE.2) THEN

F_FLAG=0 ; ELS

Y=CPEST ; continuous

ENDIF

IF (TYPE.EQ.3) THEN

F_FLAG=1; likelihood

Y=ODDEST ; non-continuous

ENDIF

 

This is a simple example of a 
continuous response (PK model defined 
with ADVAN2) and a non-continuous 
binary response (defined by a logistic 
model).  
The TYPE data item is used to signal in 
$ERROR which kind of response to 
return in the variable Y.  
The $CONTR record tells the CCONTR 
subroutine what meaning it should 
attach the TYPE data item. 
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Joint Model NMV

$DATA ID TIME AMT TYPE DV

$ESTIM MAXEVAL=9990 METHOD=COND LAPLACE 

NOABORT

$SUBROUTINE ADVAN=2 TRAN=2 

CCONTR=..\ccontr_like.for 

CONTR=..\contr.for

$CONTR DATA=(TYPE)

$ERROR

; Continuous response 

CP=F

CPEST=CP + ruv_sd

; Non-continuous response

BASE=LOG(BASEP/(1-BASEP))

LGST=BASE + BETA*CP + PPV_EVENT

ODDS=EXP(LGST)

P1=ODDS/(1+ODDS)

IF (DV.EQ.1) ODDEST=P1

IF (DV.EQ.0) ODDEST=1-P1

IF (TYPE.LE.2) THEN

Y=CPEST ; continuous

ENDIF

IF (TYPE.EQ.3) THEN

Y=ODDEST ; non-continuous

ENDIF

 

This is a simple example of a 
continuous response (PK model defined 
with ADVAN2) and a non-continuous 
binary response (defined by a logistic 
model).  
The TYPE data item is used to signal in 
$ERROR which kind of response to 
return in the variable Y.  
The $CONTR record tells the CCONTR 
subroutine what meaning it should 
attach the TYPE data item. 
 
 

Slide 

21 

©NHG Holford, 2008, all rights reserved.

CCONTR

SUBROUTINE CCONTR (ICALL,CNT,P1,P2,IER1,IER2

SAVE

C LVR and NO should match values in NSIZES

PARAMETER(LVR=30,NO=50)

COMMON /ROCM4/ Y(NO),DATA(NO,3)

DOUBLE PRECISION CNT,P1,P2,Y

DIMENSION P1(*),P2(LVR,*)

TYPE=DATA(1,1)

C Value of TYPE is provided as a user defined data item

IF (TYPE.EQ.1)THEN

C CELS is used for continuous type data

CALL CELS(CNT,P1,P2,IER1,IER2)

ELSE

C CLIK is used for LIKE or -2LL

C first argument is 1 for LIKE and 2 for -2LL

CALL CLIK(1,CNT,P1,P2,IER1,IER2)

ENDIF

RETURN

END

 

The format of the user supplied 
CCONTR is shown here. It can be used 
quite generally. The main user specific 
feature is to use the value of TYPE 
(which is determined by a value in the 
data set) to choose which method 
should be used t compute the 
contribution to the likelihood.  
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Interval Censored Time to Event
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Using NONMEM nomenclature, DV is a 
the observed event state. If it is 0 it 
means the subject has not had the 
event. If it is 1 then the subject had an 
event at some time between the last 
observation the end time when it is 
known they have had an event since the 
last observation time. 
At the time a subject is known to have 
dropped out (DV=1) the likelihood of 
dropping out in the interval between the 
last observed time and the end time is 
given by the difference in the survivor 
function at the last observed time and 
the survivor function at the end time. 
These two survivor functions can be 
computed from cumulative hazards from 
0 to the last observed time and from 0 
to the end time. 
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Hazard Models for 

Interval Censored Events

endlastobs

endlastobs

t to t from  

t to t from  

))(exp()(

)exp()(

)(

0

0

0

tYuth

Yoth

th

ID

lastobsRD

T  = unobserved event time

Yo = observed outcome at tlastobs [LOCF]

Yu = unobserved outcome at t [Model prediction]

Completely Random

Random 

Informative

Hu C and Sale M. JPKPD 2003;30(1):83-103

 

Completely random event is modeled as 
a constant  hazard over the course of 
the study.  For this type of event the 
probability of the event is not influenced 
by any other factor such as disease 
progress status. 
For the random event model, if the 
unobserved event time occurs within the 
interval ti-1 to ti, then hazard for event is 
constant only within that interval and 
hazard rates depends only on the last 
observed status at ti-1.  The disease 
status during the interval is imputed 
using the last observation carried 
forward (LOCF) method. 
For the informative event model, within 
the interval ti-1 to ti, the hazard is NOT 
constant but depends on the 
unobserved disease progression during 
that interval and it may or may not 
depend on the last observed disease 
status. 
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Time Varying Hazard

with Interval Censoring (NMVI)

$INPUT ID TRT TIME LOCF DV DVID

$ESTIM MAX=9990 SIG=6 NOABORT

METHOD=CONDITIONAL LAPLACE

$SUBR ADVAN=6 TOL=6

$MODEL

COMP=(CUMHAZ)

$PK

IF (NEWIND.LE.1) SRVTM1=1 ; initial S(t)

BSHZ=THETA(1) ; Baseline hazard

BETA=THETA(2) ; Random missing

BET2=THETA(3) ; Informative missing

EFFECT=TRT*THETA(4)

INTRI=(THETA(5)+EFFECT)*EXP(ETA(1))

SLOPI=THETA(6)*EXP(ETA(2))

$DES

DISPRG=INTRI + SLOPI*T

EXPHAZ=EXP(BETA*LOCF + BET2*DISPRG)

DADT(1)=EXPHAZ ; Observed + Unobserved h(t)

$ERROR

CHZT=BSHZ*A(1) ; Cum hazard overall

IF (DVID.EQ.1.OR.DVID.EQ.3) THEN

Y=INTRI + SLOPI*TIME + ERR(1); Biomarker

ENDIF

SRVT=EXP(-CHZT) ; Survival at t

IF (DVID.EQ.2.AND.DV.EQ.0) THEN

Y=SRVT ; Like no event

ENDIF

IF (DVID.EQ.2.AND.DV.EQ.1) THEN

Y=SRVTM1-SRVT ; Like event

ENDIF

IF (DVID.EQ.3) THEN ; last obs before event

SRVTM1=SRVT ; remember S(t) for next record

ELSE

SRVTM1=SRVTM1 ; save random variable

ENDIF

 

This illustrates joint modelling for all 3 
types of missingness mechanism 
(completely random, random and 
informative). 
The CRD model is coded by fixing 
THETA(2) and THETA(3) to zero 
($THETA, $OMEGA and $SIGMA 
records are not shown here) 
The RD model is coded by fixing 
THETA(2) to zero and estimating 
THETA(1). It uses the LOCF value to 
predict the hazard during the 
unobserved period after the last known 
observation until drop-out is known. 
The ID model is coded by fixing 
THETA(1) to zero. It uses the predicted 
disease status to predict the hazard. 
A differential equation are used to 
integrate the hazard.  
An effect of treatment is assumed to 
affect the intercept of the disease 
progress model. 
 
 
When using NMVI it is possible to save 
the value of the survivor function even if 
the hazard involves a random variable 
(i.e. an ETA is used in the computation). 
The same method can be used with 
NMV if there is no random variable in 
the hazard. The assignment of SRVT to 
SRVTM1 must to be done only at the 
time of the last observed non-event time 
which is signaled by a DVID value of 3.  
 
Note that records with DVID of 1 and 
DVID of 3 may be valid observations to 
predict the biomarker. 
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Interval Censored Data (NMVI)

ID 2: Event is between time 25 and 50. 

#ID TRT TIME LOCF DV DVID Comment

1 1 0 0 -0.6 1 Biomarker Obs

1 1 25 -0.6 28.1 1 Biomarker Obs

1 1 50 28.1 53.2 1 Biomarker Obs

1 1 75 53.2 81.8 1 Biomarker Obs

1 1 100 81.8 108.7 1 Biomarker Obs

1 1 100 108.7 0 2 Censored Event

2 0 0 0 0.1 1 Biomarker Obs

2 0 25 0.1 28.8 3 Last Non-event Obs

2 0 50 28.8 1 2 End Event Interval

 

The NONMEM VI dataset format is 
shown here (can be used with NMV if 
the hazard does not involve a random 
variable) 
When DVID is 1 this means the DV 
observation is of the disease state (e.g. 
viral load). 
When DVID is 2 this means the DV 
observation is event status (0=censored 
event, 1=had event) 
When DVID is 3 this means this is the 
last observation time before the interval 
censored event 
In this example the first subject did not 
have an event during the study and the 
final record has DV=0 to indicate this. 
The second subject had an event 
between time 25 and 50. The DVID is 3 
at time 25 to indicate this is the last time 
the subject was known not to have the 
event. The final record for this subject 
indicates that they were known to have 
had the event by time 50. 
The TRT data item is 0 for placebo and 
1 for active treatment. 
The LOCF data item is used when 
testing the random missingness model. 
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Time Varying Hazard

with Interval Censoring (NMV)

$INPUT ID TRT TIME CMT LOCF

DV MDV DVID

$ESTIM MAX=9990 SIG=6 NOABORT

METHOD=CONDITIONAL LAPLACE

$CONTR DATA=(DVID)

$SUBR ADVAN=6 TOL=6

CONTR=contr.for CCONTR=ccontr_like.for

$MODEL

COMP=(CUMHAZ)

COMP=(HZLAST,INITIALOFF)

$PK

BSHZ=THETA(1) ; Baseline hazard

BETA=THETA(2) ; Random missing

BET2=THETA(3) ; Informative missing

EFFECT=TRT*THETA(4)

INTRI=(THETA(5)+EFFECT)*EXP(ETA(1))

SLOPI=THETA(6)*EXP(ETA(2))

$DES

DISPRG=INTRI + SLOPI*T

EXPHAZ=EXP(BETA*LOCF + BET2*DISPRG)

DADT(1)=EXPHAZ ; Observed + Unobserved h(t)

DADT(2)=EXPHAZ ;Unobserved h(t)

$ERROR

CHZT=BSHZ*A(1) ; Cum hazard overall

CHZINT=BSHZ*A(2) ; Cum hazard from last obs

CHZTM1=CHZT-CHZINT ; Cum hazard upto last obs

IF (DVID.EQ.1) THEN

Y=INTRI + SLOPI*TIME + ERR(1); Biomarker

ENDIF

SRVT=EXP(-CHZT) ; Survival at t

IF (DVID.EQ.2.AND.DV.EQ.0) THEN

Y=SRVT ; Like no event

ENDIF

IF (DVID.EQ.2.AND.DV.EQ.1) THEN

SRVTM1=EXP(-CHZTM1) ; Survival at t lastobs

Y=SRVTM1-SRVT       ; Like event

ENDIF

 

NMV requires a more complex data 
structure and two differential equations 
if there is a random effect used to 
compute the hazard. The data table has 
to turn on the second integration 
compartment at the start of the interval 
during which the event occurs. The 
cumulative hazard up to the start of this 
interval is then computed by subtracting 
the hazard cumulated in the interval 
from the cumulative hazard at the end 
of the interval. 
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Interval Censored Data (NMV)

ID 2: Event is between time 25 and 50. 

Cumulative Hazard compartment is turned on at 25 (CMT=2).

#ID TRT TIME CMT LOCF DV MDV DVID EVID Comment

1 1 0 1 0 -0.6 0 1 0 Biomarker Obs

1 1 25 1 -0.6 28.1 0 1 0 Biomarker Obs

1 1 50 1 28.1 53.2 0 1 0 Biomarker Obs

1 1 75 1 53.2 81.8 0 1 0 Biomarker Obs

1 1 100 1 81.8 108.7 0 1 0 Biomarker Obs

1 1 100 1 108.7 0 0 2 0 Censored Event

2 0 0 1 0 0.1 0 1 0 Biomarker Obs

2 0 25 1 0.1 28.8 0 1 0 Last Non-event Obs

2 0 25 2 28.8 0 1 0 2 Turn On Cum Hazard

2 0 50 1 28.8 1 0 2 0 End Event Interval

 

The NONMEM V dataset format is 
shown here. 
When DVID is 1 this means the DV 
observation is of the disease state (e.g. 
viral load). 
When DVID is 2 this means the DV 
observation is event status (0=censored 
event, 1=had event) 
The CMT data item is set to 2 at the 
time of the last observation prior to the 
event. This turns on this compartment 
so that it accumulates the hazard of the 
event. 
In this example the first subject did not 
have an event during the study and the 
final record has DV=0 to indicate this. 
The second subject had an event 
between time 25 and 50. A special 
event record (EVID=2) is used to set the 
CMT variable to 2 and turn on the 
second compartment. The final record 
for this subject indicates that they were 
known to have had the event by time 
50. 
The TRT data item is 0 for placebo and 
1 for active treatment. 
The LOCF data item is used when 
testing the random missingness model. 
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Randomization Test
Simulated Linear Disease Progress Plus CRD

Model Comparison CritOBJ Low High F success

Null: CRD Alternate: RD 3.75 3.27 4.25 95%

Null: CRD Alternate: ID 3.67 3.33 4.17 95%

1000 subjects observed at ti = 0, 25, 50, 75 and 100

1000 replications; RD and ID: One extra parameter

Bootstrap mean and 95% confidence interval

Slope 1 u/time SD 1 u

Baseline 0.01

ID hazard 0.0

Average Dropout 50% (95 percentile 47-53%)

Type I error rate 5%

CRD

 

Hu and Sale investigated the three 
models for missingness using real data 
sets. They distinguished between the 
models by assuming the difference in -2 
times the log likelihood was distributed 
according to the chi-square distribution. 
This assumption was tested by 
simulating data under the completely 
random dropout model and then fitting it 
with the same model and with the 
random and informative dropout 
models. 
The probability of being observed to 
have dropped out is shown using the 
CRD model in the graph. Overall about 
50% of subjects are expected to drop-
out during the time from 0 to 100. 
The addition of one extra parameter 
with either the RD or ID models required 
a large change in objective function to 
reject the null with a 5% Type I error 
rate. Over 90% of runs minimized 
successfully with both the null model 
(CRD) and the alternate model (RD or 
ID). 
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LIKE vs -2LL Methods

ID Bias and Imprecision

LIKE Success 79% 7 h 4 min -2LL Success 44% 7h 53 min

Bias loCI hiCI RMSE Bias loCI hiCI RMSE

Slope 0.01% -0.14% 0.17% 0.7% 0.1% -0.11% 0.3% 0.67%

PPVslope -0.15% -0.77% 0.46% 2.7% -0.23 -0.77 0.32 2.6%

Baseline 2.3% -1.3% 5.8% 15.8% 15% 11% 17% 10%

ID hazard -0.16% -0.8% 0.5% 2.9% -2.2% -2.7% -1.7% 1.7%

1000 subjects observed at ti = 0, 25, 50, 75 and 100

100 replications

Slope 1 u/time SD 1 u

Baseline 0.0001

ID hazard 0.065

Average Dropout 53% (95 percentile 50-56%)

ID

 

The influence of using the two different 
methods (CCONTR and -2LL) for 
computing the contribution to the 
likelihood was investigated by Monte 
Carlo simulation. The probability of 
being observed to have dropped out is 
shown using an informative dropout 
model in the graph. Overall about 50% 
of subjects are expected to drop-out 
during the time from 0 to 100. 
A disease progress observation was 
made on up to 4 occasions after entry to 
the study. 
During simulation the ID model was 
used to predict if drop-out occurred 
between the last visit and the current 
visit. A linear disease progress model 
with fixed intercept of 0 was used to 
describe the disease progress state. 
Simulated data were then fitted to the ID 
model using NONMEM. 
The CCONTR method was faster and 
slightly more NONMEM runs minimized 
successfully. The bias and imprecision 
of the parameter estimates was similar 
for both methods. There were major 
biases in the estimated of the baseline 
and informative dropout hazard 
parameters. 
 
 

 


