Slide 1	Modelling Informative Dropout using NONMEM	
	NICK HOITORD University of Auckland	
Slide 2 Slide 3	Ceneral Principles (Abowd) • The basic insight is that missing data should be modeled using the same probability and statistical tools that are the basis of all data analysis • Missing data are not an anomaly to be swept under the carpet • They are an integral part of every analysis • They are analysis • They are analysis • They are an integral part of every analysis • They are analysis • They are an integral part of every analysis • They are analysis • They are analysis • They are an integral part of every analysis • Th	 When data are missing there are 3 commonly recognized categories. The categories are based on a mechanism (M) for causing data to be missing. The probability of data being missing may be independent of any observed value (missing completely at random) Predictable from an observed value (missing at random) Predictable from the unobserved value i.e. the missing data (not missing at random) When data is not missing at random it is also called 'informative missingness'

Slide 12	-2 Log Likelihood Disease Progress $ELS = \sum_{i=1}^{NSUB} \sum_{j=1}^{NOBS} \left(\frac{(Y_{OBS,ij} - Y_{PRED,ij})^{2}}{Var_{ij}} + \ln(Var_{ij}) \right)$ $CCONTR_{-2LL,ij} = \left(\frac{Y_{OBS,ij} - Y_{PRED,ij}}{SD_{ij}} \right)^{2} + 2 \cdot \ln(SD_{ij})$ Dropout Probability $CCONTR_{-2LL} = -2 \cdot \ln(Like)$	The joint model for the likelihood depends on calculating the likelihood for the disease state observation (e.g. viral load) and the likelihood for the drop-out observation. The disease state observation is usually a continuous variable and the likelihood can be calculated using the extended least squares method. The likelihood of the drop-out observation is simply the probability of the observation (Pr). In this example the value that is computed is -2 times the log likelihood. This is the usual way that NONMEM computes it's objective function. The contribution from each observation of disease state or drop-out is computed by a function called CCONTR in NONMEM. The equations shown here show the values computed by CCONTR using -2 time the log likelhood contribution.
Slide 13	<pre>Hu & Sale Code SMODEL COMP=CUMHAZ; compartment for integration of hazard COMP=(H2LAST, INITIALOFF); comp for LAST PERIOD hazard SPK INTERC=(THETA(1) - THETA(2)*(TRT-1))+ETA(1) SLOPE=THETA(3)+ETA(2) BSH2=THETA(4) BET2=THETA(5) BET2=THETA(6) SDES VIRL=INTERC+SLOPE*(T-12) TEMP=BETA*LOCP+BET2*VIRL DADT(1)=EXP(TEMP) DADT(2)=EXP(TEMP) SERROR CMH2=BSH2*A(1) HZLA=BSH2*A(2) IF (DVID.EQ.1) THEN ; DV=Viral Load IPRE=INTERC+SLOPE*(TIME-12) Y=2*LOG(THETA(7))+((DV-IPRE)/THETA(7))**2 ENDIF IF (DVID.EQ.2 .AND. DV.EQ.0) THEN ; NO dropout Y=-2*(-CMH2) ENDIF</pre>	A linear disease progress model is used to describe an offset treatment effect. The dropout Risk (cumulative hazard; CMHZ) is the hazard integral from the start of the study. The incremental Risk (HZLA) is the integral from the last known non-dropout time. The NM-TRAN abbreviated code used by Hu & Sale illustrates the computation of -2*log likelihood in \$ERROR for viral load (DVID.EQ.1) and the dropout indicator (DVID.EQ.2). The dropout indicator has a value of 1 if the patient dropped out before the end of the study.
Slide 14	 Modifications of Hu & Sale Method User supplied \$SUB CCONTR for joint ELS and LIKE contributions to objective function "Standard" code for disease progress prediction 	Hu & Sale described a joint model for HIV viral load and drop-out by explicitly computing the -2 log likelihood contribution to the objective function. An alternative method is to use a user defined CCONTR sub- routine which uses existing NONMEM routines to compute the likelihood. This alternative method may be simpler to use because it uses 'standard' code for the disease progress model prediction.

Slide 15	SINPUT ID TRT TIME CMT LOCF DV MDV DVID EVID SESTIM MAX=9990 SIG=4 NOABORT METHOD=CONDITIONAL LAPLACE SCONTR DATA=(DVID) \$SUBR ADVAN=6 TOL=6 CONTR=cont.for CCONTR=cont.like.for	<pre>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>	This illustrates how to joint modelling for all 3 models for missingess. The CRD model is coded by fixing THETA(2) and THETA(3) to zero (\$THETA, \$OMEGA and \$SIGMA records are not shown here) The RD model is coded by fixing THETA(2) to zero and estimating THETA(1). It uses the LOCF value to predict the hazard during the unobserved period after the
	<pre>\$MODEL COMP=(CUMHAZ) COMP=(HZLAST, INITIALOFF) \$FR BSH2=THETA(1) ; Baseline hazard BET2=THETA(2) ; RD hazard BET2=THETA(3) ; ID hazard EFFECT=THRT*ITETA(4) INTRI=(THETA(5)+EFFECT)*EXP(ETA(1)) SLOPI=THETA(6)*EXP(ETA(2)) ZMMGHubuz ZMS, anythe reasonst</pre>	<pre>IF (DVID.EQ.1) THEN Y=INTRI + SLOPI*TIME + ERR(1); Status ENDIF IF (DVID.EQ.2.AND.DV.EQ.0) THEN PD0=EXP(-CMH2) ; Pr no dropout Y=PD0 ENDIF IF (DVID.EQ.2.AND.DV.EQ.1) THEN PL0=EXP(-(CMH2RZLA)) ; Pr no drop last PU1=1-EXP(-HZLA) ; Pr dropout ENDIF ENDIF</pre>	 out is known. The ID model is coded by fixing THETA(1) to zero. It uses the predicted value of viral load to predict the drop-out hazard. The \$CONTR record identifies the DVID data item to inform the CCONTR sub-routine whether an observation is a viral load value or a drop-out value. User supplied CONTR and CCONTR sub-routines are defined in the \$SUBROUTINE record. Differential equations are used to integrate the hazard. Compartment 1 is used to integrate the study. Compartment 2 is used to integrate the hazard over the period from the last known observation until the time that it is known that dropout has occurred (at some unknown time since the last known observation). An effect of treatment is assumed
Slide 16	SUBROUTINE CCONTR (ICA SAVE C LVR and NO should match va PARAMETER(LVR=30, NO=50 COMMON /ROCM4/ Y(NO), D DOUBLE PRECISION CNT, P DIMENSION P1(*), 22 (LVR TYPE=DATA(1,1) C Value of TYPE is provided IF (TYPE.EQ.1)THEN C CELS is used for continuou CALL CELS(CNT, P1, P2 ELSE C CLIK is used for LIKE or - C first argument is 1 for LI; CALL CLIK(1, CNT, P1, ENDIF RETURN END	ONTTR LL,CNT,P1,P2,IER1,IER2 lues in NSIZES) ATA(NO, 3) 1,P2,Y **) as a user defined data item s type data ,IER1,IER2) 2LL KE and 2 for -2LL P2,IER1,IER2)	to affect the intercept of the disease progress model. The format of the user supplied CCONTR is shown here. It can be used quite generally. The main user specific feature is to use the value of TYPE (which is determined by a value in the data set) to choose which method should be used t compute the contribution to the likelihood.

Slide 19	CRD (null) Randomization Test 1000 subjects observed at t = 0, 25, 50, 75 and 100 1000 replications: RD and ID: One extra parameter Bootstrap mean and 95% confidence interval Slope 1 u/time SD 1 u Baseline 0.01 ID hazard 0.0 Average Dropout 50% (95 percentile 47-53%) Type I error rate 5%	Hu and Sale investigated the three models for missingness using real data sets. They distinguished between the models by assuming the difference in -2 times the log likelihood was distributed according to the chi- square distribution. This assumption was tested by simulating data under the completely random dropout model and then fitting it with the same model and with the random and informative dropout models. The probability of being observed to have dropoed out is shown
	Model Comparison CritOBJ Low High F success	using the CRD model in the graph. Overall about 50% of
	Null: CRD Alternate: RD 3.75 3.27 4.25 95%	subjects are expected to drop-out during the time from 0 to 100
	Null: CRD Alternate: ID 3.67 3.33 4.17 95%	The addition of one extra
	doleki Hallori, 2015, al rights reserved.	parameter with either the RD or ID models required a large change in objective function to reject the null with a 5% Type I error rate. Over 90% of runs minimized successfully with both the null model (CRD) and the alternate model (RD or ID).
Slide 20	Questions • Is Missingness Informative? - Only one bit of information per subject • Can NONMEM get the right answer? - LIKE method with CCONTR is OK - Direct coding of -2LL is biased • Can we distinguish CR, RD and ID? - Randomization test shows ΔOBJ is approximately χ² distributed	Missingness models can be used to simulate drop-outs but the data from a drop-out is small and is unlikely to help identify the underlying disease progress model because each subject only provides one bit of information. NONMEM estimates of the drop- out hazard are biased and it seems unlikely that they are reliable for simulation the drop-out process. The very large change in objective function required to reject the null is unexpected and raises questions about the implementation of the model and or NONMEMs methods.
Slide 21	More Material From John Abowd	
	dWHG Hollow, 2015, all hights restment.	

Slide 25		
	Not Missing at Random	
	 If the condition for MAR fails, then we say that the data are not missing at random, NMAR. 	
	 E.g. dropout because of adverse effects or failure of drug to be effective 	
	From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8	
Slide 26	 The Rubin and Little Taxonomy for Dealing with Missing Values Analysis of the complete records only Weighting procedures Imputation-based procedures Model-based procedures 	
	From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8	
Slide 27	 Analysis of Complete Records Only Assumes that the data are MCAR. Only appropriate for small amounts of missing data. Used to be common in economics, less so in sociology. Now very rare. 	
	From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8	

Ol' de			
Slide 28	 Weighting Procedures Modify the design weights to correct for missing records. Provide an item weight (e.g., earnings and income weights in the CPS) that corrects for missing data on that variable. 		
	From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8		
	ENHG Holtort, 2015, all rights reserved.		
Slide 29	 Imputation-based Procedures Missing values are filled-in and the resulting "Completed" data are analyzed Mean imputation Regression imputation Some imputation procedures (e.g., Rubin's multiple imputation) are really model-based procedures. 		
Slide 30		1	
	 Model-based Procedures A probability model based on <i>p</i>(<i>Y</i>, <i>M</i>) forms the basis for the analysis. This probability model is used as the basis for estimation of parameters or effects of interest. Some general-purpose model-based procedures are designed to be combined with likelihood functions that are not specified in advance. 		

Slide			
31	 Little and Rubin's Principles Imputations should be Conditioned on observed variables Multivariate Draws from a predictive distribution Single imputation methods do not provide a means to correct standard errors for estimation error. 		
Slide 32	Hazard Models for Dropout CRD: $h(t, Y_0, Y_U, \eta, \beta) = \beta_0$ RD: $h(t, Y_0, Y_U, \eta, \beta) = \beta_0 \exp(\beta_1 Y_{i+1})$, for $t_{i+1} \le t < t_i$ ID: $h(t, Y_0, Y_U, \eta, \beta) = \beta_0 \exp(\beta_2 Y_U)$, for $t_{i+1} \le t < t_i$ Y_{i+1} means LOCF Y_U means disease progress model prediction		Three models for the hazard are shown. Each one corresponds to the missingness mechanism for dropout. CRD is completely random dropout. The hazard is constant and is not affected by any observed or unobserved value of disease state. RD is random dropout. The hazard depends on the last observed value of the disease state. The last value is carried forward to the current time and therefore it is called a LOCF or Last Observation Carried Forward value. ID is informative dropout. The hazard depends on the predicted value for the disease state.
Slide 33	sedBack_MakeAjoint model for nonlinear longitudinal data with informative dropout. J Pharmacokinet Pharmacodyn 2003;30(1):83-103 SERROR CMH2=BSH2*A(1) ; Cum hazard overall HZLA=BSH2*A(1) ; Cum hazard overall HZLA=BSH2*A(1) ; Cum hazard from last obs IF (HZLA.LE.0) HZLA=1.0D-10 IF (DVID.EQ.1) THEN Y=INTRI + SLOPI*TIME + ERR(1); Status ENDIF IF (DVID.EQ.2.AND.DV.EQ.0) THEN PD0=EXP(-CMH2) ; Pr no dropout Y=PD0 ENDIF IF (DVID.EQ.2.AND.DV.EQ.1) THEN PL0=EXP(-(CMH2=HZLA)) ; Pr no drop last PU1=-EXP(-HZLA) ; Pr dropout ENDIF ; Dropott at time of visit IF (DVID.EQ.2.AND.DV.EQ.2) THEN PL0=EXP(-(CMH2=HZLA)) ; Pr no drop last PU1=THETA(PVISIT) ; Pr no drop last PU1=THETA(PVISIT) ; Pr dropout ENDIF ENDIF]	The probability of dropping out may also be affected by the process of making a visit to see the clinician. The clinician may advise the patient to withdraw at the time of the visit. This might be modelled by having a third category for the drop-out variable. When DV is 2 this indicates the patient dropped out at that time. The probability of this happening is described by an additional probability parameter (THETA(PVISIT)).