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General Principles (Abowd)

• The basic insight is that missing data should 
be modeled using the same probability and 
statistical tools that are the basis of all data 
analysis

• Missing data are not an anomaly to be swept 
under the carpet

• They are an integral part of every analysis

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8 (no longer available)
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Missing Data Mechanisms

Little & Rubin distinguish between:

•  Missing Completely at Random (MCAR)

•  Missing at Random (MAR)

•  Not Missing at Random (NMAR)

Statistical Analysis with Missing Data, 2nd edition, Roderick J. A. Little and Donald B. Rubin (New York: John Wiley & Sons, 2002).

 

When data are missing there are 
3 commonly recognized 
categories. The categories 
are based on a mechanism 
(M) for causing data to be 
missing. The probability of 
data being missing may be 

• independent of any observed 
value (missing completely at 
random) 

• Predictable from an 
observed value (missing at 
random) 

• Predictable from the 
unobserved value i.e. the 
missing data (not missing at 
random) 

 
When data is not missing at 

random it is also called 
‘informative missingness’ 
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Shafer’s Taxonomy of Methods

Shafer JL http://www.stat.psu.edu/%7Ejls/asa97/slide7.html (no longer available)

 

Shafer has identified a series of 
methods that have been 
developed for analysing missing 
data. NONMEM provides a 
likelihood based approach. 
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Modelling Informative 

Missingness

Model for the Data (PKPD and Disease Progress)

+ 

Model for the Missingness Mechanism

= Maximum Likelihood Joint Model

 

Models for ‘not missing at 
random’ (or ‘informative 
missingness’) depend on using a 
model to predict the unobserved 
values that are expected to 
determine why data is missing. 
This model for the data is simply a 
pharmacokinetic-
pharmacodynamic  plus disease 
progress model. 
 
The additional model required to 
predict missing data is a model for 
the missingness mechanism. 
 
The combination of the model for 
the data with the model for 
missingness forms a joint model. 
Maximum likelihood estimation 
can be used to determine the 
parameters of the join model. 
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Disease Progress Model

ijj2itrt1itrtij    t*)  (b    aY  

Hu C, Sale ME. A joint model for nonlinear longitudinal data with informative dropout. J Pharmacokinet Pharmacodyn 2003;30(1):83-103

atrt and btrt are fixed effect parameters which 

may depend on treatment covariate (trt)

Model can describe symptomatic (trt affects 

a) and protective (trt affects b) disease 

progress actions of treatment 

 

This figure shows an example of 
viral load observations in patients 
with human immunodeficiency 
virus (HIV) infection. The left hand 
panel is for patients treated with 
amprenavir and the right hand 
panel for patients treated with 
indinavir. 
 
A linear disease progress model 
might be used to describe the 
time course of viral load. The 
model for the data has two fixed 
effect parameters (intercept (a) 
and slope (b)). These parameters 
may be affected by a PKPD drug 
action model for the effect of 
treatment. Each parameter has an 
associated random effect to 
account for between subject 
variability. There is a residual 
error parameter to describe 
measurement error and model 
misspecification. 
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Disease Progression and 

Last Observation Carried Forward 

Statistical Madness

LOCF

Time

S(t)

Dropout

Placebo

Active
T-test
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Better Models for Missing Data
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Hu & Sale Terminology

Hu C, Sale ME. A joint model for nonlinear longitudinal data with informative dropout. J Pharmacokinet Pharmacodyn 2003;30(1):83-103

Variables are dropout time T, observed (YO) and unobserved 

values (YU) of disease progress state (e.g. HIV viral load)

(a) completely random (CRD), if Ti is independent of η, and therefore 

(YO, YU);

(b) random (RD), if Ti (given YO) is independent of YU, but may depend 

on YO. In addition, any dependence of Ti on η is only through YO;

(c) informative (ID), if Ti (given YO) depends on YU, or explicitly depends 

on η other than through YO.

 

Hu & Sale have described how to 
model missing data and have 
proposed a modified terminology 
for missingness mechanism. The 
three categories are essentially 
the same as those defined by 
Little & Rubin but the names are a 
shorter. 
 
They illustrate their terminology 
with the example of predicting the 
probability of a patient dropping 
out of a trial given the time of 
dropout and observed and 
unobserved values of viral load. 
The unobserved values are 
predicted from a PKPD and 
disease progress model. 
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Hazard, Risk, Survival, Dropout

Xehazard  
0 
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i hazardRisk
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
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
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The probability of a dropping out 
at a particular time can be 
predicted by describing the 
hazard for dropout. Hazard is the 
instantaneous risk of dropping 
out. As time passes the 
cumulative hazard predicts the 
risk of dropping out at a particular 
time. 
The hazard model shown here is 
a proportional hazard models 
which is widely used for survival 
analysis. Beta0 is the baseline 
hazard. Beta is a parameter 
describing how the hazard 
depends on some other value, X. 
The risk is the cumulative hazard. 
It is obtained by integrating 
hazard with respect to time. 
The probability of survival (not 
dropping out)  can be predicted 
from the risk by assuming an 
exponential distribution for not 
dropping out. 
The dropout probability can be 
predicted from the survival 
probability. 
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Likelihood of Event
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β2 is a parameter describing the informative dropout hazard

 

Using NONMEM nomenclature, 
DV is a the observed drop-out 
state. If it is 0 it means the subject 
has not dropped out. If it is 1 then 
the subject has dropped out at 
some time between the last 
observation when they had not 
dropped out and the current time 
when it is known they have 
dropped out. 
The probability of a drop-out 
event is conditional on whether 
drop-out has not occurred at the 
time of the probability prediction. 
This model shows the probability 
of not dropping out depends on 
the hazard accumulated from time 
0 until the time of the current 
observation given that the subject 
has not dropped out (DV=0). In 
this example the hazard uses the 
predicted disease state value 
rather than the observed disease 
state value. 
At the time a subject is known to 
have dropped out (DV=1) the 
probability of this happening is the 
product of the probability they the 
subject had not dropped out at the 
time of the last observation (when 
it was known they had not 
dropped out) and the probability 
of dropping out at some time 
between the last observation and 
the current time when it known 
the subject has dropped out. 
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-2 Log Likelihood
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The joint model for the likelihood 
depends on calculating the 
likelihood for the disease state 
observation (e.g. viral load) and 
the likelihood for the drop-out 
observation. The disease state 
observation is usually a 
continuous variable and the 
likelihood can be calculated using 
the extended least squares 
method. The likelihood of the 
drop-out observation is simply the 
probability of the observation (Pr). 
In this example the value that is 
computed is -2 times the log 
likelihood. This is the usual way 
that NONMEM computes it’s 
objective function. 
The contribution from each 
observation of disease state or 
drop-out is computed by a 
function called CCONTR in 
NONMEM. The equations shown 
here show the values computed 
by CCONTR using -2 time the log 
likelhood contribution. 
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Hu & Sale Code
$MODEL COMP=CUMHAZ ; compartment for integration of hazard

COMP=(HZLAST, INITIALOFF) ; comp for LAST PERIOD hazard

$PK

INTERC=(THETA(1) - THETA(2)*(TRT-1))+ETA(1)

SLOPE=THETA(3)+ETA(2)

BSHZ=THETA(4)

BETA=THETA(5)

BET2=THETA(6)

$DES

VIRL=INTERC+SLOPE*(T-12)

TEMP=BETA*LOCF+BET2*VIRL

DADT(1)=EXP(TEMP)

DADT(2)=EXP(TEMP)

$ERROR

CMHZ=BSHZ*A(1)

HZLA=BSHZ*A(2)

IF (DVID.EQ.1) THEN ; DV=Viral Load

IPRE=INTERC+SLOPE*(TIME-12)

Y=2*LOG(THETA(7))+( (DV-IPRE)/THETA(7) )**2

ENDIF

IF (DVID.EQ.2 .AND. DV.EQ.0) THEN ; NO dropout

Y=-2*(-CMHZ)

ENDIF

IF (DVID.EQ.2 .AND. DV.EQ.1) THEN ; dropout

Y=-2*(-(CMHZ-HZLA)) - 2*LOG(1 - EXP(-HZLA))

ENDIF

 

A linear disease progress model 
is used to describe an offset 
treatment effect. 
The dropout Risk (cumulative 
hazard; CMHZ) is the hazard 
integral from the start of the study. 
The incremental Risk (HZLA) is 
the integral from the last known 
non-dropout time.  
The NM-TRAN abbreviated code 
used by Hu & Sale illustrates the 
computation of -2*log likelihood in 
$ERROR for viral load 
(DVID.EQ.1) and the dropout 
indicator (DVID.EQ.2). The 
dropout indicator has a value of 1 
if the patient dropped out before 
the end of the study. 
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Modifications of Hu & Sale Method

• User supplied $SUB CCONTR for joint 

ELS and LIKE contributions to objective 

function

• “Standard” code for disease progress 

prediction

 

Hu & Sale described a joint model 
for HIV viral load and drop-out by 
explicitly computing the -2 log 
likelihood contribution to the 
objective function. 
An alternative method is to use a 
user defined CCONTR sub-
routine which uses existing 
NONMEM routines to compute 
the likelihood. 
This alternative method may be 
simpler to use because it uses 
‘standard’ code for the disease 
progress model prediction. 
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Modified Code

$INPUT ID TRT TIME CMT LOCF

DV MDV DVID EVID

$ESTIM MAX=9990 SIG=4 NOABORT

METHOD=CONDITIONAL LAPLACE

$CONTR DATA=(DVID)

$SUBR ADVAN=6 TOL=6

CONTR=contr.for

CCONTR=ccontr_like.for

$MODEL

COMP=(CUMHAZ)

COMP=(HZLAST,INITIALOFF)

$PK

BSHZ=THETA(1) ; Baseline hazard

BETA=THETA(2) ; RD hazard

BET2=THETA(3) ; ID hazard

EFFECT=TRT*THETA(4)

INTRI=(THETA(5)+EFFECT)*EXP(ETA(1))

SLOPI=THETA(6)*EXP(ETA(2))

$DES

DISPRG=INTRI + SLOPI*T

EXPHAZ=EXP(BETA*LOCF + BET2*DISPRG)

DADT(1)=EXPHAZ

DADT(2)=EXPHAZ

$ERROR

CMHZ=BSHZ*A(1) ; Cum hazard overall

HZLA=BSHZ*A(2) ; Cum hazard from last obs

IF (HZLA.LE.0) HZLA=1.0D-10

IF (DVID.EQ.1) THEN

Y=INTRI + SLOPI*TIME + ERR(1); Status

ENDIF

IF (DVID.EQ.2.AND.DV.EQ.0) THEN

PD0=EXP(-CMHZ)        ; Pr no dropout

Y=PD0

ENDIF

IF (DVID.EQ.2.AND.DV.EQ.1) THEN

PL0=EXP(-(CMHZ-HZLA)) ; Pr no drop last

PU1=1-EXP(-HZLA)      ; Pr drop unknown

Y=PL0 * PU1           ; Pr dropout

ENDIF

 

This illustrates how to joint 
modelling for all 3 models for 
missingess.  
The CRD model is coded by fixing 
THETA(2) and THETA(3) to zero 
($THETA, $OMEGA and $SIGMA 
records are not shown here) 
The RD model is coded by fixing 
THETA(2) to zero and estimating 
THETA(1). It uses the LOCF 
value to predict the hazard during 
the unobserved period after the 
last known observation until drop-
out is known. 
The ID model is coded by fixing 
THETA(1) to zero. It uses the 
predicted value of viral load to 
predict the drop-out hazard. 
The $CONTR record identifies the 
DVID data item to inform the 
CCONTR sub-routine whether an 
observation is a viral load value or 
a drop-out value. 
User supplied CONTR and 
CCONTR sub-routines are 
defined in the $SUBROUTINE 
record. 
Differential equations are used to 
integrate the hazard. 
Compartment 1 is used to 
integrate the cumulative hazard 
since the start of the study. 
Compartment 2 is used to 
integrate the hazard over the 
period from the last known 
observation until the time that it is 
known that dropout has occurred 
(at some unknown time since the 
last known observation). 
An effect of treatment is assumed 
to affect the intercept of the 
disease progress model. 
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CCONTR

SUBROUTINE CCONTR (ICALL,CNT,P1,P2,IER1,IER2

SAVE

C LVR and NO should match values in NSIZES

PARAMETER(LVR=30,NO=50)

COMMON /ROCM4/ Y(NO),DATA(NO,3)

DOUBLE PRECISION CNT,P1,P2,Y

DIMENSION P1(*),P2(LVR,*)

TYPE=DATA(1,1)

C Value of TYPE is provided as a user defined data item

IF (TYPE.EQ.1)THEN

C CELS is used for continuous type data

CALL CELS(CNT,P1,P2,IER1,IER2)

ELSE

C CLIK is used for LIKE or -2LL

C first argument is 1 for LIKE and 2 for -2LL

CALL CLIK(1,CNT,P1,P2,IER1,IER2)

ENDIF

RETURN

END

 

The format of the user supplied 
CCONTR is shown here. It can be 
used quite generally. The main 
user specific feature is to use the 
value of TYPE (which is 
determined by a value in the data 
set) to choose which method 
should be used t compute the 
contribution to the likelihood.  
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Dropout Data Format

ID 2: Dropout is between time 25 and 50. 

Dropout risk compartment is turned on at 25 (CMT=2).

#ID TRT TIME CMT LOCF DV MDV DVID EVID

1 1 0 1 0 -0.6 0 1 0

1 1 25 1 -0.6 28.1 0 1 0

1 1 50 1 28.1 53.2 0 1 0

1 1 75 1 53.2 81.8 0 1 0

1 1 100 1 81.8 108.7 0 1 0

1 1 100 1 108.7 0 0 2 0

2 0 0 1 0 0.1 0 1 0

2 0 25 1 0.1 28.8 0 1 0

2 0 25 2 28.8 0 1 0 2

2 0 50 1 28.8 1 0 2 0

 

The NONMEM dataset format is 
shown here. 
When DVID is 1 this means the 
DV observation is of the disease 
state (e.g. viral load). 
When DVID is 2 this means the 
DV observation is drop-out status 
(0=not dropped out, 1=dropped 
out) 
The LOCF data item is used when 
testing the random dropout 
model. 
The CMT data item is set to 2 at 
the time of the last observation 
prior to dropout. This turns on this 
compartment so that it 
accumulates the hazard of 
dropping out. 
In this example the first subject 
did not drop-out during the study 
and the final record has DV=0 to 
indicate this. 
The second subject dropped out 
between time 25 and 50. A 
special event record (EVID=2) is 
used to set the CMT variable to 2 
and turn on the second 
compartment. The final record for 
this subject indicates that they 
were known to have dropped out 
by time 50. 
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LIKE vs -2LL Methods

ID Bias and Imprecision

LIKE Success 79% 7 h 4 min -2LL Success 44% 7h 53 min

Bias loCI hiCI RMSE Bias loCI hiCI RMSE

Slope 0.01% -0.14% 0.17% 0.7% 0.1% -0.11% 0.3% 0.67%

PPVslope -0.15% -0.77% 0.46% 2.7% -0.23 -0.77 0.32 2.64

Baseline 2.3% -1.3% 5.8% 15.8% 15% 11% 17% 10%

ID hazard -0.16% -0.8% 0.5% 2.9% -2.2% -2.7% -1.7% 1.7%

1000 subjects observed at ti = 0, 25, 50, 75 and 100

100 replications

Slope 1 u/time SD 1 u

Baseline 0.0001

ID hazard 0.065

Average Dropout 53% (95 percentile 50-56%)

ID

 

The influence of using the two 
different methods (CCONTR and -
2LL) for computing the 
contribution to the likelihood was 
investigated by Monte Carlo 
simulation. The probability of 
being observed to have dropped 
out is shown using an informative 
dropout model in the graph. 
Overall about 50% of subjects are 
expected to drop-out during the 
time from 0 to 100. 
A disease progress observation 
was made on up to 4 occasions 
after entry to the study. 
During simulation the ID model 
was used to predict if drop-out 
occurred between the last visit 
and the current visit. A linear 
disease progress model with fixed 
intercept of 0 was used to 
describe the disease progress 
state. Simulated data were then 
fitted to the ID model using 
NONMEM. 
The CCONTR method was faster 
and slightly more NONMEM runs 
minimized successfully. The bias 
and imprecision of the parameter 
estimates was similar for both 
methods. There were major 
biases in the estimated of the 
baseline and informative dropout 
hazard parameters. 
 
 



Slide 
19 

©NHG Holford, 2015, all rights reserved.

0%

10%

20%

30%

40%

0 25 50 75 100

Time

D
ro

p
o

u
t 

a
t 

T
im

e

CRD (null) Randomization Test

Model Comparison CritOBJ Low High F success

Null: CRD Alternate: RD 3.75 3.27 4.25 95%

Null: CRD Alternate: ID 3.67 3.33 4.17 95%

1000 subjects observed at ti = 0, 25, 50, 75 and 100

1000 replications; RD and ID: One extra parameter

Bootstrap mean and 95% confidence interval

Slope 1 u/time SD 1 u

Baseline 0.01

ID hazard 0.0

Average Dropout 50% (95 percentile 47-53%)

Type I error rate 5%

CRD

 

Hu and Sale investigated the 
three models for missingness 
using real data sets. They 
distinguished between the models 
by assuming the difference in -2 
times the log likelihood was 
distributed according to the chi-
square distribution. 
This assumption was tested by 
simulating data under the 
completely random dropout model 
and then fitting it with the same 
model and with the random and 
informative dropout models. 
The probability of being observed 
to have dropped out is shown 
using the CRD model in the 
graph. Overall about 50% of 
subjects are expected to drop-out 
during the time from 0 to 100. 
The addition of one extra 
parameter with either the RD or 
ID models required a large 
change in objective function to 
reject the null with a 5% Type I 
error rate. Over 90% of runs 
minimized successfully with both 
the null model (CRD) and the 
alternate model (RD or ID). 
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Questions

• Is Missingness Informative?

– Only one bit of information per subject

• Can NONMEM get the right answer?

– LIKE method with CCONTR is OK

– Direct coding of -2LL is biased

• Can we distinguish CR, RD and ID?

– Randomization test shows ΔOBJ is approximately χ2

distributed

 

Missingness models can be used 
to simulate drop-outs but the data 
from a drop-out is small and is 
unlikely to help identify the 
underlying disease progress 
model because each subject only 
provides one bit of information. 
NONMEM estimates of the drop-
out hazard are biased and it 
seems unlikely that they are 
reliable for simulation the drop-out 
process. 
The very large change in 
objective function required to 
reject the null is unexpected and 
raises questions about the 
implementation of the model and 
or NONMEMs methods. 
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More Material

From

John Abowd
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Missing Data Mechanisms

• The complete data are 

defined as the matrix Y

(n  K).

• The pattern of missing 

data is summarized by a 

matrix of indicator 

variables M (n  K).

• The data generating 

mechanism is 

summarized by the joint 

distribution of Y and M.






 missing is  if ,1

observed is  if ,0

ij

ij

ij y

y
m

  ,, MYp

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8
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Missing Completely at Random

• In this case the missing data mechanism does 

not depend upon the data Y.

• This case is called MCAR.

  MpYMp ),,(

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8
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Missing at Random

• Partition Y into 

observed and 

unobserved parts.

• Missing at random 

means that the 

distribution of M 

depends only on the 

observed parts of Y.

• Called MAR.

 misobs,YYY 

),(),,( obs  YMpYMp 

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8
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Not Missing at Random

• If the condition for MAR fails, then we 

say that the data are not missing at 

random, NMAR.

• E.g. dropout because of adverse effects 

or failure of drug to be effective

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8
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The Rubin and Little Taxonomy 

for Dealing with Missing Values

• Analysis of the complete records only

• Weighting procedures

• Imputation-based procedures

• Model-based procedures

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8
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Analysis of Complete Records 

Only

• Assumes that the data are MCAR.

• Only appropriate for small amounts of 

missing data.

• Used to be common in economics, less 

so in sociology.

• Now very rare.

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8
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Weighting Procedures

• Modify the design weights to correct for 

missing records.

• Provide an item weight (e.g., earnings 

and income weights in the CPS) that 

corrects for missing data on that 

variable.

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8
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Imputation-based Procedures

• Missing values are filled-in and the 

resulting “Completed” data are analyzed

– Mean imputation

– Regression imputation

• Some imputation procedures (e.g., 

Rubin’s multiple imputation) are really 

model-based procedures.

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8
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Model-based Procedures

• A probability model based on p(Y, M) 
forms the basis for the analysis.

• This probability model is used as the 
basis for estimation of parameters or 
effects of interest.

• Some general-purpose model-based 
procedures are designed to be combined 
with likelihood functions that are not 
specified in advance.

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8
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Little and Rubin’s Principles

• Imputations should be

– Conditioned on observed variables

– Multivariate

– Draws from a predictive distribution

• Single imputation methods do not 

provide a means to correct standard 

errors for estimation error.

From John Abowd http://instruct1.cit.cornell.edu/courses/cis440/8
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Hazard Models for Dropout

CRD: h(t; YO, YU, η, β) = β 0

RD: h(t; YO, YU, η, β) = β 0 exp(β 1 Yi-1), for ti-1≤t<ti

ID: h(t; YO, YU, η, β) = β 0 exp(β 2 YU), for ti-1≤t<ti

Hu C, Sale ME. A joint model for nonlinear longitudinal data with informative dropout. J Pharmacokinet Pharmacodyn 2003;30(1):83-103

Yi-1 means LOCF

YU  means disease progress model prediction

 

Three models for the hazard are 
shown. Each one corresponds to 
the missingness mechanism for 
dropout.  
CRD is completely random 
dropout. The hazard is constant 
and is not affected by any 
observed or unobserved value of 
disease state. 
RD is random dropout. The 
hazard depends on the last 
observed value of the disease 
state. The last value is carried 
forward to the current time and 
therefore it is called a LOCF or 
Last Observation Carried Forward 
value. 
ID is informative dropout. The 
hazard depends on the predicted 
value for the disease state. 
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A Special Case

$ERROR

CMHZ=BSHZ*A(1) ; Cum hazard overall

HZLA=BSHZ*A(2) ; Cum hazard from last obs

IF (HZLA.LE.0) HZLA=1.0D-10

IF (DVID.EQ.1) THEN

Y=INTRI + SLOPI*TIME + ERR(1); Status

ENDIF

IF (DVID.EQ.2.AND.DV.EQ.0) THEN

PD0=EXP(-CMHZ)        ; Pr no dropout

Y=PD0

ENDIF

IF (DVID.EQ.2.AND.DV.EQ.1) THEN

PL0=EXP(-(CMHZ-HZLA)) ; Pr no drop last

PU1=1-EXP(-HZLA)      ; Pr drop unknown

Y=PL0 * PU1           ; Pr dropout

ENDIF

; Dropout at time of visit

IF (DVID.EQ.2.AND.DV.EQ.2) THEN

PL0=EXP(-(CMHZ-HZLA)) ; Pr no drop last

PU1=THETA(PVISIT)     ; Pr due to visit

Y=PL0 * PU1           ; Pr dropout

ENDIF

 

The probability of dropping out 
may also be affected by the 
process of making a visit to see 
the clinician. The clinician may 
advise the patient to withdraw at 
the time of the visit. This might be 
modelled by having a third 
category for the drop-out variable. 
When DV is 2 this indicates the 
patient dropped out at that time. 
The probability of this happening 
is described by an additional 
probability parameter 
(THETA(PVISIT)). 
 
 

 


