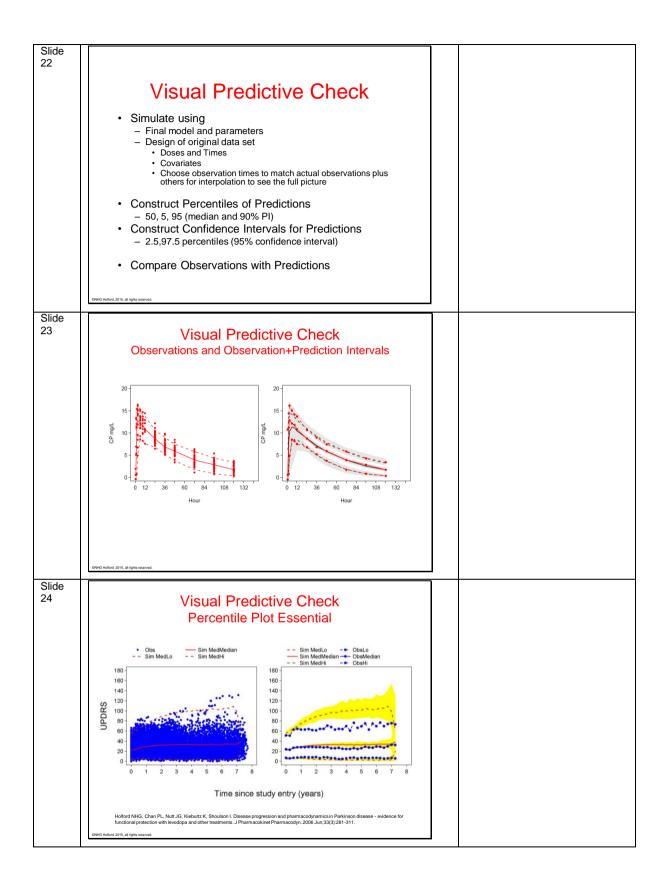


Slide		
4	 Evaluation Methods Bootstrap, Jackknife, Cross-Validation Undefined evaluation criteria Pseudo-Posterior Predictive Check Little power Prediction Discrepancy Acceptance (pre-specified criterion) Too powerful? (needs equivalence test) Visual Predictive Check Diagnostic (sometimes) Acceptance (subjective) 	
Slide 5	 Models that are overparameterised may be useful and should not rejected simply for this reason However, traditional model building values the idea of parsimony Parameter uncertainty can be used to identify model components that are not needed e.g. using Wald test or confidence intervals 	
Slide 6	 Likelihood Profile Assume that change in log likelihood with different parameter values is Chi- square distributed Fix parameter of interest and refit the data Find parameter values which change log likelihood by CHIINV(1-CI,df=1) e.g. 3.84 for 95% CI 	The log likelihood profile method does not assume symmetry of the parameter uncertainty but it does use the likelihood ratio test (LRT) based on the change in NONMEM objective function value to predict the probability of the confidence interval. This assumption is known to be only approximately true (see discussion of the randomization test).



Slide 19	We evaluate what we call the "prediction discrepancy" (pd) which is defined as the percentile of an observation in the whole marginal predictive distribution under H0.' Mentre F, Escolano S. Prediction discrepancies for the evaluation of nonlinear mixed-effects models. J Pharmacokinet Pharmacodyn. 2006 Jun;33(3):345-67.	The prediction discrepancy method uses stochastic simulation to generate a distribution of predictions for each observation. The percentile of each observation in this distribution is called the prediction discrepancy. The distribution of prediction discrepancies is expected to be uniform if the model correctly predicts the distribution from which the observations came. The prediction discrepancy distribution can be 'normalized' and also take into account correlations of observations within an individual. The resulting normalized prediction discrepancy distribution (NPDE) should have a mean of zero and a standard deviation of 1. Estimates of these parameters can be computed from the NPDE and tested against the null hypothesis that the distribution is ~N(0,1).
Slide 20	<section-header><section-header><section-header><figure><figure><figure></figure></figure></figure></section-header></section-header></section-header>	The NPDE tests for differences from a perfect fit of the model to the data. Because all models are wrong it is unrealistic to expect a perfect fit. When there is a lot of data the NPDE is sensitive to differences that have no practical relevance. This means it can be considered overpowered and will lead to rejection of the null hypothesis when the model is in fact adequate for purpose. An equivalence type of hypothesis test (such as that used for bioequivalence) is an obvious extension of the method to make it more practically useful as an acceptance method.
Slide 21	 Model Diagnosis Traditional model diagnostics based on residuals and empirical Bayes estimates can be misleading Simulation based diagnostics are more robust 	

Slide		1	
25	Imagination and Introspection		
	"Modelling in science remains, partly at least, an art.		
	A first principle is that all models are wrong; some, though, are more useful than others and we should seek those.		
	A second principle (which applies also to artists!) is not to fall in love with one model to the exclusion of alternatives.		
	A third principle recommends thorough checks on the fit of a model to the data. Such diagnostic procedures are not yet fully formalised, and perhaps never will be.		
	Some <i>imagination or introspection is required</i> in order to determine the aspects of the model that are most important and most suspect."		
	McCullagh P, Nelder JA. Generalized Linear Models. London: Chapman & Hall; 1989.		
	BNHC Hallord, 2015, all rights reserved.		
Slide 26			
	6NHG Haturi 2015, al ngha naawad		
Slide 27			
	Evaluation Methods		
	 Bootstrap, Jackknife, Cross-Validation Undefined evaluation criteria 		
	Pseudo-Posterior Predictive Check _ Little power		
	Prediction Discrepancy Acceptance (pre-specified criterion) Too poworful2 (peeds conjugance test)		
	 Too powerful? (needs equivalence test) Visual Predictive Check 		
	 Diagnostic (sometimes) Acceptance (subjective) 		
	CNHG Hattor, 2015, al hytomesmod.		

Clida		
Slide 28	Sufficient and Non-Sufficient Statistics	
	'A sufficient statistic (for the moment the term "statistic" is used in its usual sense of a scalar or vector function of the data alone) is a reduction of the data that involves no loss of information about the model parameter.	
	Sufficient statistics are, by definition, ones that <i>would</i> "automatically be well fit," as they completely determine the fit. Nonsufficient statistics are therefore appropriate candidates for detecting model inadequacies'	
	Yano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001 Apr;28(2):171-92.	
Slide 29	Predictive Check	
	'(i) The PPC can be very conservative (i.e., it will reject α -level rejectable models with lesser probability than α), and often not very powerful, even when the simulation and analysis models are quite distinct by any usual measure. This is especially so for models that differ only in their variance submodels, not their structural submodels, and in all cases with statistics computed from both the data <i>y</i> and the model parameter θ	
	(ii) The <i>R</i> 2 max diagnostic, while indicative of type I error and power, is not very reliable by itself	
	(iii) the manner of approximating $p_{\theta \nu}$ is not important, and the simplest method, a distribution degenerate at the maximum likelihood parameter estimates, seems as good as either of the others.'	
	Yano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001 Apr;28(2):171-92.	
Slide 30		
	EvaluationTypes	
	"The first type of validation, <i>external validation</i> , is the application of the developed model to a new data set (validation data set) from another study. External validation provides the most stringent method for testing a developed model.	
	<i>Internal validation</i> , the second type of validation, refers to the use of <i>datasplitting</i> and resampling techniques (<i>cross-validation</i> and <i>bootstrapping</i>)."	
	Food and Drug Administration. Population Pharmacokinetics. http://wwwfdagov/cder/guidance/1852fnlpdf. 1999:1-35.	

Slide 31			
	Data Splitting		
	<i>"Data-splitting</i> is a useful internal validation technique for creating a validation data set to test the predictive performance of a model when it is not practical to collect new data to be used as a validation data set. The disadvantage of data-splitting is that, in general, the predictive accuracy of the model is a function of the sample size resulting from the data-splitting (47)."		
	Food and Drug Administration. Population Pharmacokinetics. http://wwwfdagov/cder/guidance/1852fnlpdf. 1999:1-35.		
Slide 32]	
	Cross Validation		
	"Cross-validation, which is the use of repeated data- splitting, may prove beneficial because (1) the size of the model development database can be much larger than in alternative validation methods, so that less data are discarded from the estimation process, and (2) variability is reduced by not relying on a single sample split. Due to high variation of estimates of accuracy, cross-validation is inefficient when the entire validation process is repeated (48)."		
	Food and Drug Administration. Population Pharmacokinetics. http://wwwfdagov/cder/guidance/1852/nlpdf. 1999:1-35.		
Slide	(BMR) Holinsi, 2015, all rights searned.]	
33	Bootstrapping		
	<i>"Bootstrapping</i> , another way to perform resampling, has the advantage, like cross validation, of using the entire data set for model development. Because the sample size is limited in pediatric settings where ethical and medical concerns prevent recruitment into studies, bootstrapping can be especially useful for evaluating the performance of a population model if there is no test data set (46)."		
	Food and Drug Administration. Population Pharmacokinetics. http://wwwfdagov/cder/guidance/1852fnlpdf. 1999:1-35.		