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1. Clinical Trial Simulation Models 

Clinical trial simulation (CTS) depends fundamentally on a set of models to simulate 

observations that might arise in a clinical trial. Three distinct categories of model have 

been proposed [1]: 

• Covariate distribution 

• Input-Output 

• Execution 

They are presented in this sequence because the first decision that must be made when 

designing a clinical trial is what kind of subjects will be enrolled. The covariate-

distribution model defines the population of subjects in terms of their characteristics such 

as weight, renal function, sex and so on. Next the input-output model can be developed to 

predict the observations expected in each subject using that individual’s characteristics 

defined by the covariate distribution model. Finally, deviations from the clinical trial 

protocol may arise during execution of the trial. These may be attributed to subject 

withdrawal, incomplete adherence to dosing, lost samples, etc. The execution model will 

modify the output of the input-output model to simulate these sources of variability in 

actual trial performance. 

 

This chapter discusses the structure of input-output (IO) models. A single 

pharmacokinetic model is used to illustrate features of IO models but it should be 

understood that IO models are quite general and the principles of IO models described 

below can be applied to any process which might describe the occurrence of an 

observation in a clinical trial. 
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2. Simulation and Analysis Models 

It is a common aphorism that all models are wrong but some are useful [2]. The 

usefulness of models for simulating observations that could arise in a clinical trial is 

directly dependent on the complexity of the model. In general all the levels of the model 

hierarchy (Section 3.2 et seq) should be implemented for the purposes of clinical trial 

simulation in order to make the predicted observations as realistic as possible.  

 

Analysis of clinical trial observations, however, can be useful with much less complexity. 

One of the purposes of clinical trial simulation is to evaluate alternative analysis models 

by applying them to simulated data that may arise from a much more complex but 

mechanistically plausible model. The following description of input-output models is 

oriented towards the development of models for simulation. Similar models could be 

used for analysis of actual data or simulated data but this is usually not required to satisfy 

the objectives of many clinical trial simulation experiments e.g. an analysis of variance 

may be all that is required to evaluate a simulated data set. 

3. Input-Output Model 

The input-output (IO) model is responsible for predicting the observations in each 

subject. The simplest IO models are non-stochastic, i.e., they do not include any random 

effects such as residual unexplained variability or between subject variability. More 

complex IO models may include one or both of these random effect components. 
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3.1. IO Model Anatomy 

Equation 1 is a model for predicting the time course of concentration, C(t), using a one-

compartment first-order elimination model with bolus input. The left hand side of the 

equation, C(t), is the dependent variable. The symbol t is usually the independent 

variable in the right hand side of the equation. The symbols V (volume of distribution) 

and CL (clearance) are constants that reflect drug disposition in an individual. The 

symbol dose is also a model constant. In contrast to V and CL, the value of dose is under 

experimental control and is part of the design of a clinical trial. It is helpful to refer to 

such controllable experimental factors as properties to distinguish them from 

uncontrollable factors such as V and CL that are usually understood as the parameters of 

the model. In a more general sense all constants of the model are parameters. 

 

⎟
⎠
⎞

⎜
⎝
⎛ •−•= t

V
CL

V
DosetC exp)(

 

Equation 1 

 

3.2. IO Model Hierarchy 

IO models can be ordered in a hierarchy that make predictions about populations, groups, 

individuals and observations. Each level of model is dependent on its predecessor. The 

simplest IO model is at the population level and the most complex is at the level of an 

observation. It is the observation IO model prediction that is the foundation of clinical 

trial simulation. 
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3.3. Population IO Model 

The predictions of IO models that do not account for either systematic or apparently 

random differences between individuals are referred to here as population IO models1. 

3.3.1. Population Parameter Model 

Population models are based on parameter values that represent the population. They may 

have been estimated without consideration of covariates such as weight, etc. and simply 

reflect the characteristics of the observed population. These parameters can be considered 

naive population parameters (e.g. Vpop, CLpop).  

 

For the purposes of comparing population parameters obtained from different studies 

population parameters need to be standardized to a common set of covariates [3], e.g., 

male, weight 70 kg, age 40 years, creatinine clearance 6 L/h. Standardized population 

parameter values can be estimated using group IO models (see below) and should be 

distinguished from naive population parameters. All examples shown below refer to 

standardized parameters e.g. Vstd, CLstd in Equation 2. 

 

3.3.2. Population IO Model Simulation 

Equation 2 illustrates the use of population standardized parameters for population IO 

model simulation. A population IO model simulation based on this equation is shown in 

Figure 1. 

                                                 
1 Others may use this term to encompass a model including what are defined below as group IO, individual 
IO and observation IO models. However, it seems clearer to define the model based on the source of its 
parameters. 
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⎟
⎠
⎞

⎜
⎝
⎛ •−•= t

Vstd
CLstd

Vstd
DosetCpop exp)(

 

Equation 2 

 

3.4. Group IO Model 

The group IO model is used to simulate non-stochastic variation in the model predictions. 

Statisticians refer to a model for this kind of variation as a fixed effects model. Note that 

“effects” has nothing to do with pharmacological drug effects. It is a statistical term 

referring to a source of variability. The group IO model uses the same functional form as 

the population IO model but, instead of population parameters, group parameters are 

used. 

3.4.1. Group Parameter Model 

If the covariate distribution model includes values that distinguish individuals, e.g., 

weight, then the model parameters can be predicted from that particular combination of 

covariate values. Equation 3 to Equation 8 illustrate models that could be used to predict 

values of V and CL with a particular weight or age. These predicted parameters are 

typical of individuals with that weight or age and are sometimes known as the typical 

value parameters but are more clearly identified as group parameters, Vgrp and CLgrp, 

because they are representative of a group with similar covariates. The group parameter 

model includes the population parameter and usually a constant that standardizes the 

population parameter (Wtstd, Agestd). These normalizing constants may reflect a central 
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tendency for the covariate in the population, e.g. the median weight, or a standard 

value[3] e.g. 70 kg. Other parameters in the typical parameter model relating age to Vgrp 

and CLgrp may be theoretical constants such as the exponents in allometric models 

(Equation 3, Equation 4), or may be empirical parameters, such as FageV, FageCL, of a 

linear model (Equation 5, Equation 6). An exponential model may be a more robust 

empirical model than the linear model for many models because the prediction is always 

positive (Equation 7, Equation 8). KageV and KageCL are parameters of the exponential 

model that are approximately the fractional change in the parameter per unit change in 

the covariate value. 

1
⎟
⎠
⎞

⎜
⎝
⎛•=

stdWt
WtVstdVgrp

 

Equation 3 

4
3

⎟
⎠
⎞

⎜
⎝
⎛•=

stdWt
WtCLstdCLgrp

 

Equation 4 

( )( )AgestdAgeFageVstdVgrp V −•+•= 1  Equation 5 

( )( )AgestdAgeFageCLstdCLgrp CL −•+•= 1  Equation 6 

( )( )AgestdAgeKageVstdVgrp V −••= exp  Equation 7 

( )( )AgestdAgeKageCLstdCLgrp CL −••= exp  Equation 8 

 

3.4.1.3.Additive and Proportional Fixed Effects Models for Group Parameters 

When there is more than one covariate influencing the value of a group parameter the 

effects may be combined in a variety of ways. If there is no mechanistic guidance for 
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how to combine the covariate effects (the usual case) there are 2 empirical approaches 

that are widely used.   

3.4.1.2.Additive 

The additive model requires a parameter, SwtV, to scale the weight function predictions 

and a second parameter, SageV, similar in function to the parameter, FageV (Equation 5), 

but scaled in the units of V rather than as a dimensionless fraction. Equation 9 illustrates 

the additive model using weight and age fixed effect models. 

( )AgestdAgeSage
Wtstd

WtSwtVgrp VV −•+⎟
⎠
⎞

⎜
⎝
⎛•=

1

 

Equation 9 

 

3.4.1.3.Multiplicative 

The multiplicative model combines Equation 3 and Equation 5 so that Vstd retains a 

meaning similar to that in the population model (Equation 2) i.e. the group value of 

volume of distribution when weight equals Wtstd and age equals Agestd will be the same 

as the population standard value and similar to the naïve population value (Vpop) 

obtained when weight and age are not explicitly considered. It is usually more convenient 

to use the multiplicative form of the model because it can be readily extended when new 

covariates are introduced without having to change the other components of the model or 

their parameter values. Equation 10 illustrates the multiplicative model using weight and 

age fixed effect models. 

( )( )AgestdAgeFage
Wtstd

WtVstdVgrp V −•+•⎟
⎠
⎞

⎜
⎝
⎛•= 1

1

 

Equation 10 
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3.4.2. Group IO Model Simulation 

Examples of group IO model simulations with systematic changes in both weight and age 

are shown in Figure 2. The group model (Equation 11) applies Equation 10 for Vgrp and 

a similar expression for CLgrp (based on Equation 4 and Equation 8). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
•−•= t

Vgrp
CLgrp

Vgrp
DosetCgrp exp)(

 

Equation 11 

 

3.5. Individual IO Model 

3.5.1. Individual Parameter Model 

 

Individual parameter values are simulated using a fixed effects model for the group 

parameter and a random effects model to account for stochastic variation in the group 

values. The random effects model samples a value ηi (where the subscript “i” refers to an 

in individual) typically from a normal distribution with mean 0 and variability PPV 

(population parameter variability) (Equation 12). 

),0(~ PPVNiη  Equation 12 

 

ηi is then combined with the group parameter model to predict an individual value of the 

parameter, Cli (Equation 13). 

ii CLgrpCL η+=  Equation 13 
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The ηi can come from a univariate or multivariate distribution. Multivariate distributions 

recognize the covariance between parameters and the importance of this is discussed in 

Section 5.2. 

 

3.5.1.3.Fixed Effect Models for Random Individual Parameters 

 

There are two main sources of random variation in individual parameter values. The first 

is between subject variability (BSV) and the second is within subject variability 

(WSV)[4, 5].  Within subject variability of an individual parameter may be estimated 

using a model involving an occasion variable as a covariate. The variability from 

occasion to occasion in a parameter is known as between occasion variability (BOV). 

BOV is an identifiable component of WSV that relies on observing an individual on 

different occasions during which the parameter of interest can be estimated. Variability 

within an occasion e.g. a dosing interval, is much harder to characterise so from a 

practical viewpoint WSV is simulated using BOV.  Other covariates may be used to 

distinguish fixed effect differences e.g. WSV may be larger in the elderly compared with 

younger adults. 

 

The total variability from both these sources may be predicted by adding the η values 

from each source (Equation 22). Representative values of BSV and WSV for clearance 

are 0.3 and 0.25, respectively [6]. 

),0(~ BSVNBSViη  Equation 14 
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),0(~ WSVNWSViη  Equation 15 

iii WSVBSVPPV ηηη +=  Equation 16 

 

3.5.1.3.Additive and Proportional Random Effects Models for Individual 

Parameters 

Both additive (Equation 13) and proportional (Equation 17) models may be used with ηi. 

The proportional model is used more commonly because PPV approximates the 

coefficient of variation of the distribution of η. Because estimates of PPV are difficult to 

obtain precisely it is often convenient to use a value based on an approximate coefficient 

of variation e.g. a representative PPV might be 0.5 for clearance (approximately 50% 

CV). 

( )ii CLgrpCL ηexp•=  Equation 17 

 

 

3.5.2. Individual IO Model Simulation 

An example of individual IO model simulation is shown in Figure 3 based on Equation 

18. The figure illustrates the changes in concentration profile that might be expected 

using random variability from a covariate distribution model for weight and age 

(PPV=0.3) and a parameter distribution model for V and CL (PPV=0.5) (Table 1). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
•−•= t

V
CL

V
DosetC

i

i

i
i exp)(

 

Equation 18 
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3.6. Observation IO Model 

The final level of the IO model hierarchy is used to predict observations. Observation 

values are simulated using individual IO model predictions and a random effects model 

to account for stochastic variation in the observation values.  

3.6.1. Observation Parameter Model 

The random effects model samples a value εj (the subscript “j” is enumerated across all 

individuals and observations) typically from a normal distribution with mean 0 and 

variability RUV (random unidentified variability) (Equation 19). 

),0(~ RUVNjε  Equation 19 

εj is combined with the individual IO model to predict the observation. Common models 

include additive (Equation 20), proportional (Equation 21) and combined (Equation 22). 

The combined model most closely resembles the usual residual variability when 

pharmacokinetic models are used to describe concentration measurements. 

3.6.1.3.Additive 

jiiji tCtC ,, )()( ε+=  Equation 20 

 

3.6.1.3.Proportional 

)exp()()( ,, jiiji proptCtC ε•=  Equation 21 
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3.6.1.3.Combined 

jijiiji addproptCtC ,,, )exp()()( εε +•=  Equation 22 

 

3.6.2. Observation IO Model Simulation 

An example of an observation IO model simulation is shown in Figure 4. Random 

variability in the observations was generated using a mixed additive (RUVsd=0.05 mg/L) 

and proportional (RUVcv=0.2) residual variability model.  

 

Simulated observations less than the lower limit of quantitation (0.05 mg/L) are shown as 

open symbols in Figure 4. These observations would not be included in the analysis of 

this simulation. The removal of observations in this manner is an example of the 

application of an execution model. The IO model predicts the observation but the 

execution model reflects local policy for removal of observations that are classified as 

unquantifiable. 

 

 

4. Sensitivity Analysis 

A clinical trial simulation experiment should include an evaluation of how the 

conclusions of the simulation experiment vary with assumptions made about the models 

and their parameters (see Chapter 4.2 for more details). The nature of this sensitivity 

analysis will depend on the objectives of the simulation. If the objective is to determine 

the power of a confirming type trial then the sensitivity of the predicted power of a trial 
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design should be examined. Repeating the simulations with a different model e.g. a linear 

instead of an Emax pharmacodynamic model may do this. One may also examine the 

influence of the model parameters e.g. changing the EC50 of an Emax model. The extent 

to which the power of the trial varies under these different scenarios of models and 

parameters is a key focus of a sensitivity analysis. 

5. Parameters 

5.1. Source 

There are 3 sources of model parameters for clinical trial simulation. 

5.1.1. Theory 

Theoretical values are usually not controversial but there is still not widespread 

acceptance of the allometric exponent values for clearance and volume of distribution 

that are suggested by the work of West et al. [7, 8]. 

5.1.2. Estimates from data 

The most common source will be estimates from prior analysis of data. Inevitably it will 

be necessary to assume that parameter estimates obtained in a different population are 

suitable for the proposed clinical trial that is being simulated (see Chapter 2.4). It is 

particularly valuable to have standard, rather than naïve, population parameter estimates 

so that they can be coupled with a covariate distribution model in order to extrapolate to a 

population that has not yet been studied. 
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5.1.3. Informed guesses 

Informed guesses are always a necessary part of a clinical trial simulation. For example, 

the size of a treatment effect will have to be assumed and the model performance 

modified by suitable adjustment of dosing and parameters in order to mimic an outcome 

of the expected magnitude. 

 

5.2. Covariance 

It is important to retain information about the covariance of individual IO model 

parameters in order to obtain plausible sets of parameters. While some covariance 

between parameters may be included in the simulation via the group IO model, e.g. if 

weight is used to predict Vgrp and CLgrp, there is usually further random covariance 

which cannot be explained by a model using a covariate such as weight to predict the 

group parameter value.  

 

The need to include parameter covariance in the model is especially important for 

simulation. It can often be ignored when models are applied to estimate parameters for 

descriptive purposes but if it exists and it is not included in a simulation then the 

simulated observations may have properties very different from the underlying reality. 

For example, if clearance and volume are highly correlated then the variability of half-life 

will be much smaller than if the clearance and volume were independent. 

 

The methods for obtaining samples of parameters from multivariate distributions are the 

same as those used for obtaining covariates (see Chapter 2.2). They may be drawn from 



 18

parametric distributions e.g. normal or log normal, or from an empirical distribution if 

there is sufficiently large prior population with adequate parameter estimates. 

 

5.3. Posterior Distribution of Parameters 

It is worth remembering that point estimates of parameters will have some associated 

uncertainty. It is possible to incorporate this uncertainty by using samples from the 

posterior distribution of the model parameter estimates rather than the point estimate. For 

instance, if clearance has been estimated and a standard error of the estimate is known 

then the population clearance used to predict the group clearance could be sampled from 

a distribution using the point estimate and its standard error. 

 

5.4. Parameterisation 

 

The choice of parameterisation of a model is often a matter of convenience.  A one-

compartment disposition model with bolus input may be described using Equation 23 or 

Equation 24. The predictions of these models, with appropriate parameters, will be 

identical. 

⎟
⎠
⎞

⎜
⎝
⎛ •−•= t

V
CL

V
DosetC exp)(

 

Equation 23 

 

)exp()( tAtC •−•= α  Equation 24 
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The apparent simplicity of Equation 24 may be appealing but it hides important features 

when applied to clinical trial simulation. An explicit value for the dose is not visible and 

doses are essential for clinical trials of drugs. The rate constant, α, appears to be 

independent of the parameter A, but when it is understood that both A and α are functions 

of volume of distribution it is clear that this population level interpretation of 

independence is mistaken. Finally, because clearance and volume may vary differently as 

a function of some covariate such as weight (see Equation 3, Equation 4) the value of α 

will vary differently at the group and individual level from the way that A differs. 

 

If the model parameterisation corresponds as closely as practical to biological structure 

and function then the interaction between different components of the model is more 

likely to resemble reality. 

6. Conclusion 

The input-output model brings together the warp of scientific knowledge and weaves it 

with weft of scientific ignorance. The art of combining signal with noise is the key to 

successfully simulating the outcome of a clinical trial and to honestly appreciating that 

the future cannot be fully predicted. 

 

  



 20

7. References 

 

1. Holford NHG, Hale M, Ko HC, Steimer J-L, Sheiner LB, Peck CC. Simulation in 

Drug Development: Good Practices. http://cdds.georgetown.edu/sddgp723.html; 1999. 

2. Box GEP. Robustness in the strategy of scientific model 

building. In: Launer RL, Wilkinson GN, editors. Robustness in Statistics. New York: 

Academic Press; 1979. p. 202. 

3. Holford NHG. A size standard for pharmacokinetics. Clinical Pharmacokinetics 

1996;30:329-332. 

4. Karlsson MO, Sheiner LB. The importance of modeling interoccasion variability 

in population pharmacokinetic analyses. Journal of Pharmacokinetics & 

Biopharmaceutics 1993; 21(6):735-50. 

5. Holford NHG. Target Concentration Intervention: Beyond Y2K. British Journal 

of Clinical Pharmacology 1999;48:9-13. 

6. Holford NHG. Concentration controlled therapy. In: Esteve Foundation 

Workshop. 287 ed. Amsterdam: Elsevier Science; 2001. 

7. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric 

scaling laws in biology. Science 1997;276:122-26. 

8. West GB, Brown JH, Enquist BJ. The fourth dimension of life: fractal geometry 

and allometric scaling of organisms. Science 1999;284(5420):1677-9. 



Figure 1 Population IO Simulation: Solid line is population IO model prediction.  
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Figure 2 Group IO Simulation: SystematicVariability in Two Covariates (Weight,Age) . Solid line is population IO model 
prediction. Dashed lines are group IO model predictions 
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Figure 3 Individual IO Simulation: RandomVariability in Covariates (Weight, Age) and Group Parameters (V,CL) . Solid line 
is population IO model prediction. Dashed lines are individual IO model predictions 
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Figure 4 Observation IO Simulation: RandomVariability in Covariates (Weight, Age), Group Parameters (V,CL), and 
Residual Unexplained Variability (Additive,Proportional) . Solid line is population IO model prediction. Dotted line is 
individual IO model prediction. Symbols are observation IO model predictions. Filled symbols are execution model 
predictions which will be used for data analysis. 
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Table 1 Simulation Model Parameters2 

 

                                                 
2 Simulations illustrated in this chapter were performed using Microsoft Excel. A workbook file is available 

http://www.phm.auckland.ac.nz/Courses/PHARMCOL.716/pgio.xls.  

 

Model Level Name Value Units Description

Covariate Distribution Population WTstd 70 kg Standard weight
AGEstd 40 y Standard age

Individual PPVwt 0.3 Population parameter variability for Weight
PPVage 0.3 Population parameter variability for Age

Input Output Population Dose 100 mg Dose
Vstd 100 L Volume of distribution
CLstd 10 L/h Clearance

Group Kagev 0.01 h-1 Age and volume of distribution factor
Kagecl -0.01 h-1 Age and clearance factor

Individual PPVv 0.5 Population parameter variability for Volume
PPVcl 0.5 Population parameter variability for Clearance

Observation RUVsd 0.05 mg/L Residual unexplained variability Additive
RUVcv 0.2 Residual unexplained variability Proportional

Execution Observation LLQ 0.05 mg/L Lower Limit of Quantitation


