Drug Metabolism

Nick Holford
Dept Pharmacology & Clinical Pharmacology
University of Auckland

Objectives
- Understand why drug biotransformation takes place
- Be able to distinguish Phase 1 (metabolism) and Phase 2 (conjugation) biotransformation
- Appreciate the role of enzyme induction and inhibition for drug biotransformation
- Learn the major CYP enzymes and know at least one clinically relevant substrate for each one

Why is Understanding Biotransformation Important?
- Major route of drug elimination
- Often activates/inactivates drugs
- May produce toxic products
- Source of between patient variability
- Explains many drug-drug interactions
Biotransformations

- Two main phases

\[\text{DRUG (RH)} \xrightarrow{\text{PHASE 1}} \text{INT (ROH)} \xrightarrow{\text{PHASE 2}} \text{R-O-R'} \]

PHASE 2 – CONJUGATION (SUGARS, SO₄, Acetyl……….)
R-O-R’ – USUALLY EXCRETED IN URINE

Major Enzyme Systems

- Phase 1
 » Cytochrome P450 (CYP)

- Phase 2
 » Transferases
 – Glucuronyl-
 – Sulphate-
 – Acetate-

Cytochrome P450

- Synonyms
 » CYP
 » Mixed function oxidase (MFO)
 » Microsomal P450

- Actions
 » Over 70% of drugs are metabolized by CYPs

- Location
 » Gut wall
 » Liver

CYP Substrates

<table>
<thead>
<tr>
<th>P450 Family</th>
<th>Substrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYP 1,2,3</td>
<td>Medicines</td>
</tr>
<tr>
<td>CYP 4,5,8</td>
<td>Fatty acids, prostaglandins</td>
</tr>
<tr>
<td>CYP 7,11,17,21,24,27</td>
<td>Steroids</td>
</tr>
</tbody>
</table>
Slide 10

CYP1A2
- Marker Drug: **theophylline**
- Clinically Relevant Drugs
 - bronchodilator (theophylline)
- Drug Interaction
 - tobacco, green veges, BBQ (inducer)
 - cimetidine (inhibitor)
- Ethnicity
 - ?

Slide 11

CYP2E1
- Marker Drug: **ethanol**
- Clinically Relevant Drugs
 - analgesic paracetamol (-> NAPQI)
- Drug Interaction
 - ethanol (inducer)
- Ethnicity
 - ?

Slide 12

CYP2C9
- Marker Drug: **s-warfarin**
- Clinically Relevant Drugs
 - anticoagulant (warfarin)
- Adverse Event Risk
 - Lower dose and increased bleeding risk
- Ethnicity
 - Caucasian 25%
 - Asian 1%
 (% with variant alleles and lower CL)

"CYP2C9 variants with reduced metabolizing ability were less frequent in Japanese compared to the other two populations."

Japanese Caucasian

<table>
<thead>
<tr>
<th>CYP2C9</th>
<th>2 C430T</th>
<th>3 A1075C</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese</td>
<td>0.000</td>
<td>0.035</td>
<td>3.5%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>0.133</td>
<td>0.056</td>
<td>18.9%</td>
</tr>
</tbody>
</table>
CYP2C19
- **Marker Drug**: mephenytoin
- **Clinically Relevant Drugs**: acid-pump inhibitor (omeprazole)
- **Therapeutic Benefit**: Cure of GORD 86% in poor metabolizers, 46% in homozygous extensive metabolizers of lansoprazole
- **Drug Interaction**: Decreased effectiveness of clopidogrel (a prodrug, an anti-platelet agent, when combined with omeprazole (CYP2C19 inhibitor))
- **Ethnicity (% with low clearance)**: Caucasian 4%, Asian 20%

CYP2D6
- **Marker Drug**: debrisoquine
- **Clinically Relevant Drugs**: tricyclic-antidepressants (amitriptyline), beta-blockers (metoprolol), prodrug analgesics (tramadol, codeine)
- **Drug Interaction**: fluoxetine, quinidine (inhibitor)
- **Ethnicity (% with low clearance)**: Caucasian 7%, Asian 1%

CYP3A4
- **Marker Drug**: simvastatin
- **Clinically Relevant Drugs**: HMG-CoA reductase inhibitor (simvastatin), protease inhibitor (anti-HIV) (lopinavir), immunosuppressant (cyclosporine)
- **Drug Interaction**: ketoconazole, grapefruit juice (inhibitor), lopinavir with ritonavir for improved effect, St John’s Wort (inducer)
- **Ethnicity**: ?
- **No recognized polymorphism**

[11/17/2009] FDA is alerting the public to new safety information concerning an interaction between clopidogrel (Plavix), an anti-clotting medication, and omeprazole (Prilosec/Prilosec OTC), a proton pump inhibitor (PPI) used to reduce stomach acid. New data show that when clopidogrel and omeprazole are taken together, the effectiveness of clopidogrel is reduced. Clopidogrel is metabolized to its active metabolite in part by CYP2C19. Concomitant use of drugs that inhibit the activity of this enzyme results in reduced plasma concentrations of the active metabolite of clopidogrel and a reduction in platelet inhibition. Avoid concomitant use of drugs that inhibit CYP2C19, including omeprazole (Prilosec), esomeprazole, cimetidine, fluconazole, ketoconazole, voriconazole, etravirine, felbamate, fluoxetine, fluvoxamine, and ticlopidine.

30% of medicines are metabolized to with CYP3A4/5 as the major pathway.

CYP Activity

- **Induction**
 - Increased activity
 - Many substances can induce
 - E.g. tobacco smoke induces CYP1A2

- **Inhibition**
 - Decreased activity
 - Usually competitive
 - E.g. grapefruit juice inhibits CYP3A4 (in gut)

Clinical Applications

- **Drug Interaction Awareness**

- **Dose Individualization**
 - Needs
 - Phenotype
 - Genotype
 - Not widely available (yet)