Slide 1	Disease Progress Nick Holford Dept Pharmacology and Clinical Pharmacology University of Auckland		
Slide 2	Outline 1. What is disease progress? 2. Models for disease progress 3. Models for drug action 4. Placebo effects 5. Practical Example	<u>,</u>	Disease progression describes the natural history of disease without treatment. The word 'progression' implies a direction of change – usually with worsening severity. Disease progress refers to a description of disease progression plus changes attributable to treatments and placebo responses.
Slide 3	economical Pharmacology = Disease Progression + Drug Action		Clinical pharmacology can be described as the science of understanding disease progress which is the result of disease progression (clinical) and and drug action (pharmacology). Disease progression implies that the disease changes with time. Drug action refers to the time course of drug effect and includes pharmacokinetics, pharmacodynamics and a link model to account for delays in effect in relation to drug concentration. Clinical pharmacology is not a static description of the use of a drug but includes the time course of disease, drug concentration and drug effect. Holford N. Clinical pharmacology = disease progression + drug action. Br J Clin Pharmacol. 2015;79(1):18-27

Slide 27		1	
	 Chan PLS, Holford NHG. Drug treatment effects on disease progression. Annu Rev Pharmacol Toxicol. 2001;41:625-59. Holford NHG, Mould DR, Peck CC. Disease Progress Models. In: Atkinson A, editor. Principles of Clinical Pharmacology. San Diego: Academic Press; 2001. p. 253-62. Post TM, Freijer JI, DeJongh J, Danhof M. Disease system analysis: basic disease progression models in degenerative disease. Pharm Res. 2005 Jul;22(7):1038-49. Plocger BA, Holford NH. Washout and delayed start designs for identifying disease modifying effects in slowly progressive diseases using disease progression analysis. Pharm Stat. 2009 Jul-Sep;8(3):225-38. Vu TC, Nut JG, Holford NHG. Progression of motor and nonmotor features of Parkinson's disease and their response to treatment. Br J Clin Pharmacol. 2012;74(2):267-83. Holford N. Clinical pharmacology = disease progression + drug action. Br J Clin Pharmacol. 2015;79(1):18-27 		
Slide 28	<pre>\$ERROR CE=F ; Immediate Effect PK S0=THETA(1)*EXP(ETA(1)) ALPHA=THETA(2)*(1+ETA(2)) ; Note proportional ETA BETA=THETA(3)*(1+ETA(3)) ;Offset Drug Action Y=S0 + ALPHA*TIME + BETA*CE + EPS(1)</pre>		This code assumes that the drug action is described by a PK model for concentration which has an immediate effect. Any PK model can be used and a delayed effect could be modelled by using an effect compartment model. The drug action is added to the baseline (S0) in order to produce an offset effect. Note that the rate of progression of disease (alpha) and the effect of the drug (beta) may be either positive or negative in an individual patient. It is important not to use an exponential model for the random effects so that both patterns of progress and drug action can be described.
Slide 29	<pre>Particle Participation of the participation of</pre>		It is reasonable to suppose that the start of a clinical trial is the stimulus for the placebo response. The placebo response can by imagined to be due to the time course of placebo 'concentration' after a 'placebo dose' at time zero (the start of the trial). A basic pharmacokinetic first order absorption and elimination model can be used to describe the placebo time course. Differences in height of response between patients are determined by the apparent placebo 'dose'. Differences in the rate of appearance and loss of response are determined by the 'absorption' and 'elimination' half-lives. This type of placebo model function has been used to describe the placebo response in Alzheimer disease trials. Holford NHG, Peace KE. Methodologic aspects of a population pharmacodynamic model for cognitive effects in Alzheimer patients treated with tacrine. Proc Natl Acad Sci U S A. 1992;89:11466-70.

Slide 30	Slope Effect Code	Note that protective effect models must be coded as differential equations because drug concentration (CE) varies with time
	<pre>\$PK S0=THETA(1)*EXP(ETA(1)) ALPHA=THETA(2)*(1+ETA(2)) BETA=THETA(3)*(1+ETA(3)) CL=THETA(4)*EXP(ETA(4)) V=THETA(5)*EXP(ETA(5)) ; Must use differential equations for SLOPE effect \$DES CE=A(1)/V DADT(1) = -CL*CE ; PK model DADT(2) = BETA*CE + ALPHA ; Slope Action \$ERROR DISPRG=A(2) Y=S0 + DISPRG + EPS(1)</pre>	
Slide 31	Asymptotic Progress Code	The drug effect is shown as an action on the steady state asymptote (SSS). Alternatively it could have been on the exponential rate constant (Kprog) or on both SSS and Kprog.
	<pre>\$PK SO=THETA(1)*EXP(ETA(1)); baseline SSS=THETA(2)*(1+ETA(2)); asymptote steady state status DLTA= SSS - S0 ; change from baseline to asymptote THALF=THETA(3)*EXP(ETA(3)); half-life of asymptotic process BETA=THETA(4)*(1+ETA(4)); drug effect parameter CL=THETA(5)*EXP(ETA(5)); PK model clearance KPROG=LOG(2)/THALF \$DES CE=A(1) STATUS=A(2) DADT(1) = -CL*CE; PK model DADT(2) = KPROG*(DLTA*(1+BETA*CE) - STATUS); exponential asymptote \$ERROR DISPRG=A(2) Y=S0 + DISPRG + EPS(1)</pre>	
	Eliðris Holton, 2020, all rights maarrool.	