Slide 1	Differential Equation Models Using NM-TRAN Nick Holford Dept Pharmacology & Clinical Pharmacology University of Auckland, New Zealand	The principles of using differential equations to define pharmacokinetic and pharmacodynamic models can be applied to many modelling programs. The use of NM-TRAN to code models for NONMEM illustrates some of these general principles and also involves some techniques that are peculiar to the NONMEM system.
Slide 2	 Why Use DEQs? Simpler to write and understand Some models don't have closed form solution e.g. Mixed Order elimination ("Michaelis-Menten) Turnover models ("Indirect Effect PKPD") 	In general it is easier to write a pharmacokinetic model using differential equations (DEQs). The time course of changes in biological systems can usually be thought of in terms of physical processes reflecting input and output. Differential equations provide a simple way of describing concentrations and effects by directly translating a biological process into a simple equation. There are some classes of pharmacokinetic model that cannot be expressed as closed form (or analytical) solution. However, these models can used by numerical solutions to a set of differential equations.
Slide 3	Closed form or Analytical solution C(t)=Dose/V*exp(-CL/V*t) Differential Equation dC/dt=-CL/V*C The Solution C(t) The Derivative -CL/V*C Initial Condition C(0)=Dose/V	Terminology is important when describing how to use differential equations.

Slide			-	This example shows equivalent
4	Closed Form and DEQ			NM-TRAN code for closed form and differential equation defined methods. The model is a one compartment first order elimination disposition model. The
	Closed Form	Differential Equation		solution of the equation is provided in the \$ERROR block
	\$SUB ADVAN1 TRANS2	\$SUB ADVAN6 TOL=3 \$MODEL COMP (CENTRAL)		using the default prediction variable F.
	\$pk CL=THETA(1)	\$pk CL=THETA(1)		
	V=THETA(2) S1=V	V=THETA(2) S1=V		
	\$ERROR Y=F+ERR(1)	\$DES DADT(1)=-CL*A(1)/V \$ERROR Y=F+ERR(1)		
	ENHO Holford, 2015, all rights reserved.			
Slide 5	\$SUB ADVAN Subroutines 			The \$SUBROUTINE record is used to identify the method used to solve differential equaitons. NONMEM provides three methods for solving differential equations.
	 ADVAN 6 Simplest DEQ ADVA ADVAN 8 Stiff DEQ systems ADVAN 9 More robust than AD 	N VAN 6		The fastest and usually the most effective is ADVAN6. This uses a variable step size Runge-Kutte integrator.
	SAES [useful?] ADVAN 13 NM7 Only Faster with newer es TOL option	timation methods?		when there is a big difference in the time constants ('half-lives') among the differential equations then the system is said to be stiff. Stiff systems can take a very long time to solve using Runge-Kutte methods (or may not be solvable
	- 3 is usually OK, - 9 recommended for N - 9 recommended for N	M7 with NSIG=3, SIGL=9		ever). The ADVAN8 method uses a Gear integrator designed for solving stiff systems.
				For non-stiff systems an alternative method is ADVAN9. It uses the Adams predictor- corrector method and may work better than ADVAN6 for some systems. It can be hard to predict which integration method is best for a particular problem. The best method can be identified by trying each method in turn setting MAXEVAL=0 and timing how long it takes to complete.
				All the integrators use a common parameter to control the local precision of the solution. This is specified as the TOL option on the \$SUBROUTINE record. Bigger numbers mean the integrator will attempt to find a higher precision solution. This can take longer and sometimes cause NONMEM to fail with an error message that TOL might be too large.

Slide 6	 \$MODEL COMP defines each compartment Names for compartments have no meaning Attributes: DEFDOSE (Default for CMT data item) DEFOBS (The "F" compartment) 	The \$MODEL record is used to define the number of compartments in the differential equation system. There are certain attributes to a compartment that sometimes need to be changed. DEFDOSE defines the default dosing compartment if this is not specified in the NONMEM data item CMT. DEFOBS defines the default observation compartment if this is not specified in the NONMEM data item CMT or PCMT. It is usually easier and clearer to explicitly define the CMT item in the data set and to compute the observation prediction in \$ERROR.
Slide 7	<pre>\$DES\$ • Derivatives in DADT (1NCOMP) • Solutions in A (1NCOMP) • NONMEM takes care of all compartment input This is OK C1=A(1)/V C1=A(1)/V DADT(1) = -CL*C1 DADT(1) = RATE-CL*C1</pre>	The \$DES record is used to compute quantities needed to solve the differential equations. Each compartment defined in the \$MODEL record should have a differential equation defined in \$DES. The value of the differential equation is assigned to an element of the DADT array. The solution of each differential equation is supplied as an element of the A array. The order of the compartments in \$MODEL corresponds to the array index in DADT and A. NONMEM takes care of delivering drug to the compartment. You should not attempt to write a differential equation involving the input process that is already defined by the data file AMT and RATE data items.
Slide 8	\$ERROR • Can refer to solution as F or A () Y=F + ERR(1) Y=A(1)/V + ERR(1) (This works for any ADVAN) • Cannot use same variable name as \$DES SDES C1=A(1)/V SERROR CP=A(1)/V not $C1=A(1)/V$	The \$ERROR record obtains the solution of the differential equation either in the default variable F or by directly computing it from the solution array A. Be careful about variable names in \$DES and \$ERROR. It is often tempting to use the same name for a variable but NM-TRAN will identify this as an error.

Slide 9	CMT Data Item • CMT links AMT to the model compartment • Not specific to use of \$DES but often needed with \$DES - AMT are for compartment 1 #ID TIME AMT are for compartment 3 #ID TIME AMT are for compartment 3	The CMT data item is commonly used when writing differential equation models. Unfortunately the design of NONMEM requires that this model specific value has to specified in the data set. This can be a nuisance because it means that changing your model requires a change to the data.
Slide 10	Initial Conditions • Models may need to initialize compartments without a dose e.g. turnover models dM/dt=Rin - Kout*M At t=0: Rin=Kout*M(0)	When NONMEM was designed in the last millennium it was expected that \$DES would only be used to model pharmacokinetic systems that always started with an initial value of zero for all the compartments. In NONMEM V there was no convenient way to specify the initial condition of a differential equations but all differential equations must have their initial condition defined!If the initial condition is not zero e.g. when describing the kinetics of a physiological substance, a trick had be used to set the initial condition value. This is no longer required.
Slide 11	 Initializing Compartments A_0FLG is set by NONMEM for the first record of each subject (i.e. NEWIND.LE.0) (1) Explicit compartment initialization block: IF (A_0FLG.EQ.1) THEN A_0(1)=THETA(1)*(1+ETA(1)) ENDIF (2) Implicit compartment initialization block:	

Slide 16	DE Evaluations (NM 7) To change the maximum number of calls during an integration interval for NM7 try placing the following at the beginning of \$PK. "FIRST" "USE PRCOM_INT, ONLY: IMAX and somewhere after all MU-referencing specify the IMAX value. For example, "IMAX is an internal NONMEM variable that limits the number of differential equation evaluations. Default is 1000000. Verbatim code must be entered EXACTLY as shown	RE: [NMusers] help on a minimization problem Ludden, Thomas Tue, 22 Jun 2010 11:53:50 -0700 To change the maximum number of calls during an integration interval for NM7 try placing the following at the beginning of \$PK. "FIRST " USE PRCOM_INT, ONLY: IMAX and somewhere after all MU- referencing specify the IMAX value. For example, " IMAX=300000 Beginning with version VI the default value is 1000000. To change the default value, redefine MAXFCN in SIZES and recompile.
Slide 17	Poforoncos	
	INCICICION INCICIONAL INCICONAL INCICONALI INCICONALI INCICONALI INCICONALI INCICONALI I	
	Fehlberg E. Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems. NASA Technical Report 1969;R-315	
	Forsythe GE, Malcolm MA, Moler CB. Computer methods for mathematical computations. Englewood Cliffs: Prentice-Hall,Inc; 1977	
	204/G Hubitot 2015, al inplot received.	