Slide		
1	Clearance Nick Holford Dept Pharmacology & Clinical Pharmacology University of Auckland, New Zealand	
Slide 2	Pharmacology φαρμακον pharmakon Medicine Poison Magic Spell	Pharmacology is derived from a Greek word (pharmakon). The Greeks used this word to mean a medicine, a poison or a magic spell.
Slide 3	etermentet Clinical Pharmacology Pharmacokinetics Pharmacodynamics CL V Emax C50 Dose Effect	Clinical pharmacology describes the effects of drugs in humans. One way to think about the scope of clinical pharmacology is to understand the factors linking dose to effect. Drug concentration is not as easily observable as doses and effects. It is believed to be the linking factor that explains the time course of effects after a drug dose. The science linking dose and concentration is pharmacokinetics. The two main pharmacokinetic properties of a drug are clearance (CL) and volume of distribution (V). The science linking concentration and effect is pharmacodynamics. The two main pharmacodynamic properties of a drug are the maximum effect (Emax) and the concentration producing 50% of the maximum effect (C50).

Slide 7	Theophylline Target Concentration Clin. Pharmacokinet. 25 (6): 495-505, 1993 Cheophylline Target Concentration in Severe Airways Obstruction – 10 or 20 mg/L? A Randomised Concentration-Controlled Trial Nicholas Holford ¹ , Peter Black ¹ , Ron Couch ² , Julia Kennedy ³ and Robin Briant ¹ Department of Pharmacology and Clinical Pharmacology, School of Medicine, University of Auckland, New Zealand Department of Clinical Chemistry, Auckland Hospital, Auckland, New Zealand Department of Pharmacology and Clinical Pharmacology, School of Medicine, University of Auckland, New Zealand Department of Pharmacology and Clinical Pharmacology, School of Medicine, New Zealand Department of Pharmacology and Clinical Pharmacology, School of Medicine, New Zealand Department of Pharmacology and Clinical Pharmacology, School of Medicine, New Zealand Department of Pharmacy, School of Medicine, University of Otago, Dunedin, New Zealand Department of Pharmacy, School of Medicine, University of Otago, Dunedin, New Zealand Department of Pharmacy, School of Medicine, University of Otago, Dunedin, New Zealand Department of Pharmacy, School of Medicine, University of Otago, Dunedin, New Zealand Department of Pharmacy, School of Medicine, University of Otago, Dunedin, New Zealand <td colspa<="" th=""><th>A study of the effects of theophylline in patients with severe airways obstruction was carried out at Auckland Hospital. It showed that the target concentration is 10 mg/L. Higher concentrations had little extra benefit but substantially more toxicity e.g. nausea and vomiting. If the target concentration is known what dose rate is needed to maintain the concentration at the target?</th></td>	<th>A study of the effects of theophylline in patients with severe airways obstruction was carried out at Auckland Hospital. It showed that the target concentration is 10 mg/L. Higher concentrations had little extra benefit but substantially more toxicity e.g. nausea and vomiting. If the target concentration is known what dose rate is needed to maintain the concentration at the target?</th>	A study of the effects of theophylline in patients with severe airways obstruction was carried out at Auckland Hospital. It showed that the target concentration is 10 mg/L. Higher concentrations had little extra benefit but substantially more toxicity e.g. nausea and vomiting. If the target concentration is known what dose rate is needed to maintain the concentration at the target?
Slide 8	Maintenance Dose Rate > At Steady State: Rate Out = Rate In > Therefore Rate Out = CL · Concentration mg/h = L/h · mg/L 30 mg/h = 3 L/h · 10 mg/L	Maintenance dose rate can be predicted if the target concentration and the drug clearance are known. Steady state drug concentrations are maintained when the rate of drug administration (rate in) is equal to the rate of elimination (rate out). Using the definition of clearance we can predict the steady state rate in. Note the units of clearance are typically L/h and concentration is mg/L. Maintenance dose rates are then readily predicted with units of mg/h.	
Slide 9	Bathtub Model CL = Rate Out/Concentration CONC CONC U	The bathtub provides a physical model to explain how clearance determines drug elimination. This bathtub has fixed rate of water flowing in from the tap (rate in = 4 drops/unit time). Water is lost from the bathtub at the same rate (rate out = 4 drops/unit time) which keeps the bath water level constant (steady state). Clearance is determined by the size of the hole in the bathtub.	

Slide 12	Physiological Basis > Medium » Gentamicin 6 L/h - Kidney » Digoxin 9 L/h - Kidney and Liver	Gentamicin is elminated mainly by glomerular filtration so its clearance is about 6 L/h. Digoxin is cleared both by glomerular filtration but also by metabolism in the liver.
Slide 13	Physiological Basis > Slow * Theophylline 3 L/h - Liver > Very Slow * Warfarin 3 L/day - Liver	Theophylline is mainly metabolized by the liver but its clearance is low in relation to liver blood flow. Only a small fraction is extracted as blood passes through the liver. Renal elimination of theophylline is negligible. Warfarin has very slow clearance by liver metabolism.
Slide 14	Clearance Classification Constant Concentration Dependent Flow Dependent	Clearance processes can be classified depending on whether clearance is constant (i.e. apparently independent of concentration and organ blood flow), if it changes with concentration (and therefore with dose), or changes with organ blood flow. In this context clearance is considered constant within an individual without regard to unpredictable within subject variability. Concentration independent clearance is described by a first- order elimination process while concentration dependent clearance is a mixed order elimination process. Concentration independent, concentration dependent, concentration dependent and flow dependent clearance are not exclusive properties. A drug can be eliminated by a combination of these processes. Note that although first-order clearance is constant the rate of elimination still varies with concentration.

